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ABSTRACT: Numerous studies have engineered nanoparticles
with different physicochemical properties to enhance the
delivery efficiency to solid tumors, yet the mean and median
delivery efficiencies are only 1.48% and 0.70% of the injected
dose (%ID), respectively, according to a study using a
nonphysiologically based modeling approach based on pub-
lished data from 2005 to 2015. In this study, we used
physiologically based pharmacokinetic (PBPK) models to
analyze 376 data sets covering a wide range of nanomedicines
published from 2005 to 2018 and found mean and median
delivery efficiencies at the last sampling time point of 2.23% and
0.76%ID, respectively. Also, the mean and median delivery
efficiencies were 2.24% and 0.76%ID at 24 h and were decreased to 1.23% and 0.35%ID at 168 h, respectively, after
intravenous administration. While these delivery efficiencies appear to be higher than previous findings, they are still quite low
and represent a critical barrier in the clinical translation of nanomedicines. We explored the potential causes of this poor
delivery efficiency using the more mechanistic PBPK perspective applied to a subset of gold nanoparticles and found that low
delivery efficiency was associated with low distribution and permeability coefficients at the tumor site (P < 0.01). We also
demonstrate how PBPK modeling and simulation can be used as an effective tool to investigate tumor delivery efficiency of
nanomedicines.
KEYWORDS: advanced material, drug delivery, nanomedicine, nanoparticle, physiologically based pharmacokinetic modeling,
tissue biodistribution, tumor delivery

Nanomaterials or nanoparticles (NMs or NPs) can be
engineered to have different physicochemical and
biological properties, such as different shapes, sizes,

charges, and surface coatings, to provide a multifunctional
platform for diagnosis and targeting therapy of various diseases,
including cancer.1−4 In particular, the enhanced permeability
and retention (EPR) effect is purported to be one of the major
mechanisms for passive retention of 10−200 nm NPs, due to
the impaired lymphatic drainage and relatively high perme-
ability of vascular endothelial cells in tumors.4−6 Examples
include, but are not limited to, self-assembled polymeric
micelles7 and liposomes8 that can be encapsulated with
anticancer drugs to enhance tumor targeting and on-site
drug releasing. In contrast, active targeting is a strategy that
counts on surface functionalization with a certain ligand,9

peptide,10 or coating11 to facilitate the recognition and binding
to the surface of tumors.

Numerous studies have been devoted to the design of
nanomedicines with higher therapeutic indices, i.e., higher
tumor targeting ability, longer circulating half-lives in blood,
tumor accumulation, and lower systemic toxicity in normal
tissues.12,13 Despite these purported advantages, NP trans-
lation into clinical applications is limited partly due to a low
tumor delivery efficiency of only 0.70% of the injected dose (%
ID) as previously reported.14 Subsequent quantitative analyses
further revealed that <0.0014%ID intravenously (IV) admin-
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istered NPs with active targeting moiety were delivered to
targeted cancer cells in the tumor sites with only 2.0% of the
cancer cells interacting with NPs.15 These surprisingly low
tumor delivery and cancer cell targeting efficiencies suggest the
importance of examining key physicochemical and pharmaco-
kinetic determinants of NP disposition within the tumor
microenvironment. Additionally, these low delivery efficiencies
were estimated using empirical noncompartmental and non-
physiologically based modeling approaches14,15 that are
inherently unable to be extrapolated to predict time-dependent
kinetics of NP distribution to tumors/tissues across species
with different physiologies and study designs nor to provide a
mechanistic explanation of estimated NP delivery in tumor-
bearing animals. These computational limitations in prior
pharmacokinetic modeling approaches can be addressed by

using a physiologically based pharmacokinetic (PBPK)
modeling approach, which is a mechanism-based computa-
tional modeling method that simulates absorption, distribu-
tion, metabolism, and excretion (ADME) of substances in an
organism.16−19 A number of PBPK models have been
developed for different types of NPs loaded with or without
anticancer drugs.17,20−30 However, none of these studies use a
PBPK modeling approach to systematically analyze and
compare NP disposition across hundreds of disparate data
sets from tumor-bearing animals in order to obtain a more
insightful and comprehensive conclusion on the key determi-
nants of NP delivery efficiency to tumors.
To improve our understanding and reveal the critical factors

in the systemic delivery of NM to tumors, the present study
aimed to develop and apply a generic PBPK model for

Figure 1. Procedure, strategies, and inclusion/exclusion criteria for the literature search. Following the literature search from the databases
of Cancer Nanomedicine Repository (CNR) and PubMed and application of listed selection criteria, 200 tumor-bearing mouse studies with
a total of 376 data sets published from 2005 to 2018 were identified for subsequent PBPK modeling and simulation analyses.
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describing NM disposition in tumor-bearing mice and then
employ this model to analyze tissue and tumor distributions of
various types of NMs in order to identify key determinants of
NM tumor delivery efficiency. In addition, we applied the
model to simulate short-term (24 h), long-term (168 h), and
time-dependent biodistribution to tumors to examine the time
dependence of NM tumor delivery efficiency. Finally, we
proposed a long-term strategy for future studies of nano-
medicines to enhance the design of preclinical trials and to
facilitate clinical translation of NMs with higher tumor delivery
efficiency and optimal therapeutic index, with a focus on the
role of PBPK modeling and simulation in this process.

RESULTS AND DISCUSSION

PBPK Model Calibration and Simulation in Tumor-
Bearing Mice. This study used the inclusion/exclusion
criteria listed in Figure 1 to screen the literature and identified
200 pharmacokinetic studies (376 data sets in total) for
subsequent PBPK modeling and simulations with experimental
protocols summarized in Table S1 in Supporting Information.
A PBPK model for NMs in healthy mice (Figure 2A) was
calibrated with the biodistribution data for venous plasma,
lungs, liver, spleen, and kidneys in healthy mice injected IV
with 13 nm gold (Au) NPs (AuNPs).31 The predicted values
were in good agreement with reported kinetic profiles for up to
168 h postdosing as indicated by the estimated coefficient of
determination (R2) of 0.95 (Figure S1 in Supporting
Information). The tumor-bearing PBPK models (Figure 2B)
extrapolated from the PBPK model in healthy mice (Figure
2A) adequately simulated most of the tumor delivery kinetics
for 313 out of 376 total data sets (83%) with R2 ≥ 0.75 or
<10% difference in tumor delivery efficiency. This difference

was estimated at the last sampling time point and calculated
using the PBPK model (DETlast) (Table S2) versus a
noncompartmental linear trapezoidal integration method
(DETlast_PK) (Table S1).
Figure 3 shows comparisons of PBPK model simulations

with 29 representative data sets of tumor delivery kinetics in
tumor-bearing mice following IV injection with different types
of inorganic (I) or organic (O) NMs (INMs or ONMs).
Additional information associated with performing the PBPK
simulations as well as the estimated nanoparticle-specific
parameter values are summarized in Tables S1−S2 with details
provided in the Supporting Information Excel files E1−E4.
Within 24−48 h after IV administration, most tumor kinetic
profiles displayed distinctive uptake during the accumulation
phases, indicating that NMs were delivered to solid tumors
successfully and resided in the tumors for at least 24−48 h and
then were eliminated from the tumors (Figure 3).
In the present meta-analysis, we established a general tumor-

bearing PBPK modeling framework that successfully simulated
most of the available published data sets (i.e., 313 out of 376
data sets) for describing NM biodistribution to tissues/tumors
in tumor-bearing mice for up to 168 h after systemic
administration. These PBPK models allow one to simulate
the maximum, short-term (24 h), long-term (168 h), and NM
concentration−time profiles in the tumor that reflects the time
dependency of tumor delivery efficiency; a perspective typically
not available or difficult to obtain from traditional animal
studies.

Effect of Parameter Sensitivity on Tumor Delivery. A
local sensitivity analysis was performed based on one
representative study32 with sufficient measured data points
conducted using AuNPs in tumor-bearing mice for up to 168 h

Figure 2. Schematic diagram of PBPK models in (A) healthy and (B) tumor-bearing mice intravenously administered with AuNPs and
various inorganic and organic nanomaterials (INMs and ONMs), respectively. Except plasma and brain, each compartment is divided into
three major parts: capillary blood, tissue interstitium, and endocytic/phagocytic cells (PCs) or tumor cells (TCs).
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in order to determine the contribution, as well as the
importance of each parameter, to the short-term (24 h) and
long-term (168 h) dose metrics of tissues and tumor.
Specifically, positive values of the normalized sensitivity
coefficient (NSC) estimates indicate that an increase in the
parameter value would also increase the dose metrics, and vice
versa. Table S3 lists all the calculated NSC values for highly
influential parameters on short-term and long-term dose
metrics of AuNPs distributed to tumors or organs/tissues, in
which parameters with |NSC| ≥ 0.3 were considered sensitive.
For physiological parameters, cardiac output (QCC) had

more impact on the 168 h dose metrics of liver, spleen, and
kidneys than the 24 h dose metrics; while fractional cardiac
output to spleen (QSC) was highly influential to the liver dose
metrics at 24 h (Table S3). Other physiological parameters
such as fractional volume of the body for plasma, liver, spleen,
kidneys, and tumor (VPlasmaC, VLC, VSC, VKC, and VTC,
respectively) and blood volume fraction of liver tissue (BVL)
had significant contribution to the increase in the dose metrics
for individual tissues with most |NSC| estimates of >0.5. NM-
specific parameters, distribution coefficients for spleen,

kidneys, and tumor (PS, PK, and PT) were identified as
highly influential parameters that affected both 24 h and 168 h
biodistributions in spleen, kidneys, and tumor with estimated
|NSC| values ranging from 0.7 to 1. NM-specific parameters
associated with endocytic/phagocytic and tumor cell uptake
within particular tissues had a greater impact on the dose
metrics for liver, spleen, kidneys, and tumor estimated at 168 h
than on the 24 h dose metrics.
Our sensitivity analysis suggests that tumor delivery

efficiency of NMs was highly sensitive to the following
parameters; PT (i.e., tumor tissue:plasma distribution co-
efficient), Kmax,T (i.e., maximum uptake rate constant by tumor
cells in the tumor tissue), and VTC (i.e., volume fraction of
tumor tissue in the body) (Table S3). We further explored the
relationship between tumor delivery efficiency and nano-
particle-specific parameters using AuNPs as an example (66
data sets). The results of rank-sum test (i.e., the estimated
AuNPs-related parameters were separated into two groups
with 33 data sets in each group according to their ranked
values) suggest that lower distribution and permeability
coefficients at the tumor site (PT and PATC) would hinder

Figure 3. Representative simulation results from the PBPK model in tumor-bearing mice intravenously administered with various types of
INMs, including (A) and (B) gold,167,179 (C) iron oxide,176 (D) gadolinium (Gd)-calcium phosphate (CaP),147 and (E) silica157 NMs as well
as ONMs, including (F) liposome,121 (G) dendrimer,35 (H) hydrogel,36 (I) polymeric,11 (J) single-wall carbon nanotube (SWCNT),122 (K)
ginseng extract,195 and (L) anticancer drug 10-hydroxycamptothecin (HCPT)102 NMs. Tumor tissue concentrations as presented in the y-
axis are expressed in the units of percent of the injected dose (%ID),%ID/g, or μg/g according to units used in the original articles. R2 is the
coefficient of determination. Uppercase letters P and A followed by each legend represent passive and active targeting strategies,
respectively. Abbreviations: A, active targeting; AuNP, gold nanoparticle (NP); BSA, bovine serum albumin; F, folate; FA, folic acid; G4
dendrimer, generation 4 polyamidoamine dendrimer; GNC, gold nanocluster; IONP, iron oxide NP; NC/ND/NR, nanocube/nanodisc/
nanorod; P, passive targeting; PEG, polyethylene glycol; PSMA, prostate-specific membrane antigen; RGD, arginine-glycine-aspartic acid
peptide; SNP, silica NP; Tat, peptide; Zn, zinc(II).
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the targeting delivery of AuNPs and therefore lower the
delivery efficiency (Table S4). The multivariable linear
regression results indicate that PATC is a critical factor in
affecting delivery efficiency of AuNPs to the tumor tissue.
However, these results were based on estimated parameter
values that had a degree of uncertainty. They remain to be
optimized using more advanced statistical methods, such as the
Bayesian approach with Markov chain Monte Carlo simu-
lation33 and verified experimentally with in vitro and/or in vivo
studies. The cause and mechanism that lead to low tumor
delivery efficiency might be due in part to multiple tumor
physiological factors that are worth exploring in future studies.
Subgroup Analyses and Future Nanomedicine

Design from the PBPK Perspective. Among all the
estimates of tumor delivery efficiency, including DETlast, DE24
(tumor delivery efficiency estimated at 24 h post-IV
administration), DE168 (tumor delivery efficiency estimated
at 168 h post-IV administration), DEmax (maximum tumor
delivery efficiency post-IV administration), and DETlast_PK;

DE168 had the lowest median delivery efficiency of 0.35%ID,
suggesting that by 168 h post-systemic administration, most of
the NMs delivered to the tumor site had left the tumor site
(Figure 4 and Figure S2). There was a slight improvement in
the mean DETlast value of 2.23%ID estimated from this study
based on the data sets collected from 2005 to 2018 using a
physiologically based approach, compared with the previously
reported result of 1.48%ID estimated based on the literature
from 2005 to 2015 using a nonphysiologically based
approach14 (Figure 4A and Table 1). The median DETlast
estimates from Wilhelm et al.14 and the present study had no
apparent difference (0.70% vs 0.76%ID), implying that the
studied NMs can be delivered to solid tumors successfully at a
median delivery efficiency of ∼0.7%ID. Surprisingly, using the
PBPK approach, there was no apparent improvement in the
mean tumor delivery efficiencies estimated from data sets after
2015 (2.33%ID) versus before 2015 (2.13%ID) (P = 0.65).
There was no significant improvement of median tumor
delivery efficiency from recent published data sets (after 2015)

Figure 4. Subgroup analyses on tumor delivery efficiencies estimated at the last sampling time point according to the original literature
(DETlast) using our tumor-bearing PBPK model. Box-and-whisker plots of tumor delivery efficiency data (%ID) for different subgroups: (A)
year, (B) targeting strategy, (C) type of nanomaterials (NMs), (D) inorganic NMs, (E) organic NMs, (F) shape, (G) hydrodynamic
diameter, (H) ζ potential, (I) tumor model, and (J) cancer type. The boxes represent the 25th to 75th percentiles, and solid lines in the
boxes indicate the median values. The pink dashed and solid lines denote the median and mean values of tumor delivery efficiencies derived
from a previous study based on 193 published data sets from 2005 to 2015.14 The green dashed and solid lines stand for the median and
mean values of tumor delivery efficiencies derived from the present study based on 376 published data sets from 2005 to 2018.
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Table 1. Summary of Tumor Delivery Efficiency Estimates for Different Types of Nanomaterials*

*DETlast, DE24, and DE168 represent tumor delivery efficiency estimated at the last sampling time point according to the original pharmacokinetic
study at 24 h and 168 h, respectively. DEmax is the maximum tumor delivery efficiency based on individual PBPK simulation. aDETlast_PK is the
tumor delivery efficiency estimated at the last sampling time point according to the original pharmacokinetic study using the noncompartmental
linear trapezoidal integration method as used by Wilhelm et al., i.e., area-under-the-tumor-concentration-curve (AUC) method.14 bMedian (mean).
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(P > 0.15). No statistically significant differences were
observed in further comparison of mean delivery efficiency
estimated using nonphysiologically and physiologically based
approaches (i.e., DETlast_PK vs DETlast) (P = 1.00), indicating
that both approaches generate similar tumor delivery efficiency
estimates (Table S5).
Several trends were observed from subgroup analyses by

comparing median estimates of tumor delivery efficiencies
(DETlast) (Table 1). First, active targeting strategies had
slightly higher delivery efficiencies of 0.89%ID compared to
0.70%ID of passive targeting strategies (P < 0.01) (Figure 4B,
Table 1, and Table S5). Second, INMs had superior tumor
delivery efficiencies of 1.12%ID in comparison with 0.62%ID
of ONMs (P < 0.05) (Figure 4C, Table 1, and Table S5).
Furthermore, INMs composed of iron oxide and ONMs such
as dendrimers tended to have higher delivery efficiencies of
2.80% and 7.96%ID, respectively (Figure 4D,E and Table 1).
Third, rod-shaped NMs had the highest median DETlast
estimate of 1.62%ID followed by spherical and other shaped
NMs of 0.74% and 0.58%ID, respectively (Figure 4F and Table
1). Fourth, NMs with hydrodynamic diameters of <10 nm
displayed the highest median DETlast estimate of 1.41%ID,
followed by >200 nm, 10−100 nm, and 100−200 nm NMs of
0.94%, 0.75%, and 0.56%ID, respectively (Figure 4G and Table
1). Fifth, NMs with neutral and positive surface charges
possessed higher delivery efficiencies of 0.81% and 0.90%ID,
respectively, compared to 0.47%ID of negatively charged NMs
(Figure 4H and Table 1). Finally, mice with orthotopically
inoculated tumors, regardless of allografted or xenografted
ones, had relatively higher delivery efficiencies of >1.00%ID,
compared with approximate or lower than 0.70%ID for
heterotopically inoculated tumor models (Figure 4I and
Table 1).
Tables S6 and S7 summarize the results of a one-way

analysis of variance (ANOVA) test and simple linear regression
for all 376 data sets and the selected 313 data sets that had
confidence in the estimation of tumor delivery efficiency. The
results for the curated confidently predicted data sets showed
that the variables “tumor model” and “cancer type” had similar
and significant contributions to the tumor delivery efficiencies
of Au NMs and INMs (P < 0.05) (Table S7). By contrast, in

addition to variable “cancer type”, variables related to NM
physicochemical properties, including “core materials”,
“shape”, “hydrodynamic diameter”, and “ζ potential” had
significant influence on the overall tumor delivery efficiencies
of ONMs (P < 0.05) (Table S7).
Table 2 and Tables S8 and S9 list the multivariable linear

regression models constructed for Au NMs, INMs, ONMs, and
all NMs as well as the related statistical criteria for determining
the significance and goodness-of-fit of each model. By
excluding 63 data sets with weakly estimated (low confidence)
tumor delivery efficiencies (R2 < 0.75 or >10% differences by
comparing DETlast with DETlast_PK), the full regression models
based on the selected confidently predicted 313 data sets with
the same variables being included can better describe the
response, e.g., log(DETlast), for gold NM (R2 = 0.62; P < 0.01),
INMs (R2 = 0.51; P < 0.001), ONMs (R2 = 0.43; P < 0.001),
and all NMs (R2 = 0.36; P < 0.001) (Table 2), compared to
the full regression models based on all the 376 data sets (Table
S8). Overall, the estimated best regression models for the
curated 313 confident data sets revealed that “cancer type”,
“tumor model”, and “ζ potential” were critical factors in
determining tumor delivery efficiency, regardless of the type of
NMs studied (Table 2).
Based upon the Welch’s t-test, active targeting had

statistically significant higher mean tumor delivery efficiency
than passive targeting (Table S5). In contrast, the rank-sum
test results suggest the median tumor delivery efficiency of
active targeting was not statistically superior compared to
passive targeting (Table S5). While most of the calibrated
pharmacokinetic studies report that active targeted NMs have
statistically significant higher tumor delivery efficiency,
anticancer drug efficacy,34−37 tumor cell toxicity,8,10,35−42 and
tumor growth inhibition8,10,35−43 compared to passive
targeting, some studies indicate either the opposite or no
significant differences depending on the targeting strategy.44−48

Comparing INMs with ONMs, both mean and median tumor
delivery efficiencies of INMs were statistically significant higher
than ONMs (Table S5). However, it must be noted that
statistically significant differences do not always translate to
biologically significant events or improved clinical outcome,
and vice versa.49−51 Biologically significant events or clinical

Table 2. Multiple Linear Regression Results of Selected Models for the Log-Transformed Tumor Delivery Efficiency Estimated
at the Last Sampling Time Point (log(DETlast)) Based on the 313 Confidently Predicted Datasetsa

a**P < 0.01, and ***P < 0.001. R2, coefficient of determination; Adj-R2, adjusted R2; AIC, Akaike information criterion; BIC, Bayesian or Schwarz
Bayesian information criterion; Type, inorganic or organic nanomaterials (INMs or ONMs); MAT, core material of INMs or ONMs; TS, targeting
strategy; CT, cancer type; TM, tumor model; log(HD), log-transformed hydrodynamic diameter; ZP, ζ potential.
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improvements depend on multiple factors. Besides the delivery
efficiency of the NP to the tumor site, other critical factors
include the therapeutic potency and efficacy of the drug, the
duration of exposure of the NP-carried drug at a concentration
above the therapeutic threshold, as well as the toxicological
profile of the drug.
This study confirms that smaller NMs with <10 nm

hydrodynamic diameter can be delivered to tumors at a higher
delivery efficiency compared to larger NMs (>10 nm).
Significantly, there were Au52,53 and dendrimer54−56 NMs
with measured hydrodynamic size <10 nm and estimated
tumor delivery efficiency >5.00%ID (Table S1). Another
noteworthy finding is that NMs with hydrodynamic diameter
>200 nm have a relatively higher tumor delivery efficiency
compared to NMs with ∼10−200 nm in hydrodynamic
diameter. Several studies using >200 nm NMs with higher
tumor delivery efficiency (>5.00%ID) support this observation
(Table S1).37,43,57−59

Our results suggest that in addition to size, the geometry of
NMs can modulate tumor uptake and in vivo disposition of
NMs. In particular, a tumor delivery efficiency of 1.62%ID was
observed for rod-shaped NMs which was greater than spherical
(0.74%ID), plate-, or flake-shaped NMs (0.46%ID) as well as
other geometries (0.58%ID). Several studies show that
elongated nanostructures, compared to nanospheres, exhibit
greater tumor accumulation and longer half-lives in blood

circulation perhaps due to adherence to the endothelial cells
lining the blood vessel walls that enhance the site-specific
delivery.43,60,61

Our analyses show that administered NMs with positive
(>10 mV) and near-neutral (−10 to 10 mV) surface charges
have similar tumor deliver efficiencies (0.81−0.90%ID), but
are higher than the negatively charged NMs (0.47%ID).
Surface properties, such as charge (ζ potential), play a critical
role in the type and magnitude of biomolecule (e.g., proteins,
lipids, carbohydrates) adsorption that results in the formation
of a biocorona, which in turn influences the pharmacokinetics,
biodistribution, and cellular uptake of systemically adminis-
tered NMs.62−69 Surface charge of administered NMs can
affect not only the above-mentioned site-specific extravasa-
tion10,70−72 but also subsequent cancer cell type-specific
internalization, e.g., higher internalizations of positively charged
NMs have been reported in several cancer cell types, compared
with their negatively charged counterparts.73−76 Not surpris-
ingly, our regression analyses reveal that in addition to NM ζ
potential, heterogeneity in tumor physiology (i.e., cancer type)
is an important factor in determining efficiency of tumor cell
targeting, which is consistent and supported by previous
studies.7,73,77

Similar to the nonphysiologically based study by Wilhelm et
al.14 that covered the time period from 2005 to 2015, the
current PBPK model-based study suggests that there was no

Table 3. Summary* of the Differences and Major Findings between Current Study and the Previous Study by Wilhelm et al.14

*DETlast_PK is the tumor delivery efficiency estimated at the last sampling time point according to the original pharmacokinetic study using the
noncompartmental AUC approach as used by Wilhelm et al.14 DE24, DE168, and DETlast represent tumor delivery efficiency estimated at 24 h, 168 h,
and the last sampling time point, respectively, according to the original pharmacokinetic study. DEmax is the maximum tumor delivery efficiency
based on the individual PBPK simulation. aThe mean value of 1.48%ID was calculated from 193 included data sets based on the reported tumor
delivery efficiencies by Wilhelm et al.14 and the Cancer Nanomedicine Repository (CNR) database. There were 238 data sets in the CNR database
at the time of the present study, 232 of which were analyzed and reported in the Wilhelm et al.14 paper. One additional study containing 6 data sets
was uploaded into the CNR database after the publication of the Wilhelm et al.14 paper. After excluding studies due to lack of information and/or
did not meet the criteria for subsequent PBPK modeling and simulation as described in Figure 1, there were 193 data sets from the CNR database
being included and analyzed.
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statistically significant improvement in NM tumor delivery
efficiency before and after 2015 (up to year 2018). Compared
to the results reported by Wilhelm et al.,14 several key findings
and major differences from the present study have been
summarized in Table 3. Briefly, the current study employs a
physiologically based approach (i.e., PBPK modeling) that is
capable of estimating time-dependent tumor delivery efficiency
and generates models that are extrapolatable across admin-
istration routes and doses as well as species; a computational
approach that is not possible using traditional noncompart-
mental pharmacokinetics as used by Wilhelm et al.14 Besides
“cancer type” and “tumor model” as critical factors affecting
tumor delivery efficiency reported by the previous study,14 we
have identified another critical factor “ζ potential”. These
differences may be due in part to the incorporation of recent
published data sets after 2015, different categorization methods
used in subgroup and statistical analyses, and different tumor
delivery efficiency estimates between the previous study14 and
the present study. Other statistical methods, including
principal component analysis-based regression78 or random
forest regression79 may be worth exploring in the future to
determine the potential key determinants of tumor delivery
efficiency.
In the past several decades, many small molecule cancer

drugs have been approved and used to treat different cancers
successfully.80 In general, the potential weaknesses of cancer
chemotherapy include its low bioavailability, high-dose
requirements, adverse side effects, low therapeutic indices,
development of multiple drug resistances, and nonspecific
targeting.81 In the field of small molecule cancer chemo-
therapy, the pharmacokinetic focus is on improving overall
drug bioavailability. For most of the approved cancer
chemotherapeutic drugs, bioavailability data via oral route
are available. However, the specific information on the
“delivery efficiency” of a small molecule cancer drug to the

tumor site is lacking, which is quite different from the delivery
efficiency to the tumor site of NPs that is commonly reported
in NM literature. In theory, we can calculate the “delivery
efficiency” of a small molecule drug to the tumor site provided
that we have the complete pharmacokinetic data in the plasma
and tumor. However, this would be an entirely new
investigation whose goals would be to confirm whether NP-
based drug formulations outperform conventional small
molecular chemotherapy.
Our PBPK model successfully simulates the majority of the

tumor delivery kinetics for various types of NMs in tumor-
bearing mice. Yet, there are several challenges and limitations
to implement this PBPK computational framework in order to
more appropriately describe NM disposition to the tumor and
tissues in tumor-bearing animals. First, the model fails to
capture the kinetics in the tumor for several NMs (63 data
sets). This may be a result of many factors, including an
insufficient number of and improperly timed experimental data
points, unobvious uptake or release phases of the tumor kinetic
profiles, a sudden increase in the tumor uptake phase and/or
abrupt decrease following IV injection, or extended retention
of delivered NMs until later time points. The exact
mechanisms of these phenomena remain to be investigated,
prohibiting our inclusion of these mechanisms in our general
model. Importantly, the present study has employed a strict
standard to evaluate model simulation results via both
qualitative (i.e., visual inspection of the simulated and
measured kinetic profiles) and quantitative evaluation (i.e.,
linear regression analysis and quantitative comparison between
DETlast and DETlast_PK). In addition, a review of the curated
confidently estimated data sets indicates that such a
mechanism-based PBPK modeling approach could be used as
a screening tool to select well-behaved data sets for further
analyses. Finally, these analyses were conducted in mice, and

Figure 5. Proposed long-term strategy in facilitating the design of future nanomedicines and translation from preclinical studies to clinical
applications, and the role of PBPK modeling and simulation approach in this field.
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integrating data sets from other laboratory animals would
ultimately help improve NM designed for humans.23

Some limitations and challenges to the current approach
remain to be addressed. Our PBPK model does not simulate
the process of biocorona formation that dynamically alters the
NMs’ properties and disposition64,68 within an animal as we
have previously reported.66,82,83 PBPK models incorporating
biocorona formation kinetics of NMs would better describe
NM-specific tumor dosimetry and remain to be implemented.
Moreover, the tumor vasculature, extracellular matrix, and
microenvironment are highly variable in animals and humans
bearing solid tumors. It is necessary to develop a nano-
medicine-specific and tumor-bearing PBPK model in humans
incorporating drug/nanomedicine pharmacodynamics84,85 to
describe individual tumor progression,86 anticancer drug
releasing pharmacokinetics,19,22 and therapeutic response
after receiving chemotherapy, i.e., PBPK/PD, to facilitate
designs of the next-generation nanomedicines with optimal
therapeutic index.87−91

To address these aspects, we propose a long-term integrative
computational strategy from the PBPK perspective that could
aid in the design of nanomedicine studies (Figure 5).
Specifically, by implementing our tumor-bearing PBPK models
for a specific type of NMs coupled to constructed regression
models, researchers may be able to estimate the tumor delivery
efficiency of administered NMs and/or propensity of loaded
anticancer drugs. By comparing to the specific type of NMs in
our database, nanoscientists performing fundamental bench
work would be able to modify their synthesized NMs with
desired physicochemical properties and optimize the ther-
apeutic index of NMs with higher drug loading capacity and
tumor delivery efficiency with minimum systemic toxicity (left
panel in Figure 5). The present study provides a ready-to-use
PBPK modeling framework calibrated by hundreds of
pharmacokinetic data sets in mice bearing various tumor
types. These informative and organized data sets for NMs that
have been tested in the literature are provided in the
Supporting Information Excel files E1−E4. The representative
model code and all model parameters are provided in
Supporting Information. This PBPK modeling framework
may be extrapolated to rats, dogs, monkeys, and humans to
gain more insight into determining the optimal dose with
minimum side effects and systemic toxicity for designing
personalized and optimized cancer therapy for preclinical trials
as well as for individual cancer patients undergoing clinical
trials (right panel in Figure 5).
In view of the generally slow progress and limited success in

translating nanomedicine into clinical applications, integrative
PBPK modeling and systems biology analyses are needed and
would be facilitated if the authors always reported
physicochemical (e.g., size, shape, ζ potential, etc.) and
biological (e.g., pharmacokinetic, biodistribution, and (cyto)-
toxicity data) properties of their synthesized NPs and details in
experimental protocols (e.g., dose in the units of mg or mg/kg
and tumor concentration in the units of μg/g tumor,%ID, or %
ID/g tumor) as well as raw concentration−time data.92 Only
extensive interdisciplinary communication of reproducible
nanomedicine design aiming at solving a clinical problem, in
combination with open source repository documenting
transparent experimental details provided by the authors that
meet the “minimum information reporting” standard,92 would
possibly realize successful clinical translation.89

CONCLUSIONS
While one can be impressed with the dramatic advancement of
nanotechnology and nanomedicine over the past decades, we
must acknowledge that our current progress in translating
cancer nanomedicine research into clinical application was
slow before 2015, and in the ensuing years after 2015 (up to
2018). This continues to bring into question the validity of the
EPR effect which is based on preferential tumor retention. A
thorough understanding of NM-tumor interaction is necessary
for facilitating clinical development of cancer nanomedicines
with NM toxicity screening and safety evaluation, followed by
manufacture of favorable, contaminant-free, reproducible, and
scalable NMs. To accomplish this goal, a modeling framework
that factors in species-specific physiological disposition is
essential to extrapolate both from in vitro to in vivo as well as
from animals to humans. This study explores tumor delivery
efficiencies using data from hundreds of nanoplatforms in such
a PBPK modeling and simulation framework to identify
influential factors influencing tumor delivery kinetics. We hope
this study and the computational approach facilitate the future
design of cancer nanomedicines and improve clinical trans-
lation from bench work to bedside.

MATERIALS AND METHODS
Data Source and Model Structure. In an elegant analysis,

Wilhelm et al.14 estimated tumor delivery efficiencies (%ID) using a
noncompartmental linear trapezoidal integration pharmacokinetic
method, which estimates the area of delivery efficiency under the
concentration−time curve of the tumor (AUC). This statistical
moment approach was applied to over a hundred publications which
identified key factors that influenced tumor delivery.14 The relation-
ships between low tumor delivery efficiencies (<1.0%ID) and multiple
factors were reported, including physicochemical properties of NMs,
targeting strategies, cancer types, etc. In addition, they constructed the
open source database of Cancer Nanomedicine Repository (CNR)
that included the tumor delivery efficiency, related biological
information, and physicochemical properties of delivered NMs from
118 publications (http://inbs.med.utoronto.ca/cnr/). On the basis of
their work, we included published tumor delivery studies since 2015.

The criteria for whether or not to include the latest publications in
the current analysis are summarized in Figure 1. Specifically, relevant
tumor delivery studies were selected from the databases of CNR
(studies published between 2005 and 2015) and PubMed (from
January first, 2015 to September fourth, 2018) for further computa-
tional analyses, including PBPK model calibration and simulation,
sensitivity analysis, and multivariable linear regression analysis. The
literature search was conducted using the following keywords:
nanoparticle delivery, nanomaterial delivery, biodistribution, pharma-
cokinetics, mice, rats, and “tumor or tumour”. In brief, this study only
included published articles suitable for PBPK modeling, i.e., studies
reported tumor concentration data in more than or equal to 3
sampling time points in units of μg/g tumor, %ID, and %ID/g tumor
from tumor-bearing rodents following IV administration in con-
vertible dose units of mg or mg/kg. IV is the major route of
administration for nanomedicines and provides a better estimate of
the actual dose delivered to the systemic circulation by eliminating
potentially confounding absorption kinetics. Tumor delivery studies
conducted with tumor-bearing rats were excluded due to insufficient
number of studies compared to those in tumor-bearing mice (i.e., 10
out of 393 studies). Our analysis also excluded studies of which the
corresponding authors did not respond to our requests for essential
data and experimental details that are needed for PBPK analysis. In
total, there were 376 data sets from 200 NP tumor delivery studies in
tumor-bearing mice that were included for PBPK simulations and
analyses (Table S1).7−11,22,32,34−48,52−60,70,71,73,76,93−257

There were two phases in PBPK model calibration and simulation
in the present analysis: Phase I was to establish a permeability-limited
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PBPK model to simulate the biodistribution of AuNPs to organs/
tissues following IV administration in healthy mice based upon our
previously developed PBPK model (Figure 2A), and phase II was to
extrapolate the healthy mouse PBPK model to a tumor-bearing PBPK
model. This generic model structure was then employed to simulate
the delivery of various INMs or ONMs to solid tumors after IV
injection in tumor-bearing mice (Figure 2B). Specifically, the
concentration data in healthy mice after IV injection of AuNPs
were obtained from Cho et al. for PBPK model calibration.31 In brief,
6-week old male BALB/c mice were injected with polyethylene glycol
(PEG)-coated AuNPs (4, 13, or 100 nm) via the tail vein at 0.85 mg/
kg body weight. Mice (n = 9/group) were euthanized at 0.5, 4, 24,
168 h and 1, 3, and 6 months post-injection at each sampling time
point, and their plasma and tissue samples (e.g., lungs, liver, spleen,
and kidneys) were collected and analyzed for Au concentrations using
inductively coupled plasma-mass spectroscopy (ICP-MS). The 13 nm
AuNP mouse pharmacokinetic data were selected to calibrate the
healthy mouse PBPK model because of the sufficient sampling time
points.
This model structure was based upon our recently developed PBPK

model for AuNPs20 with minor modifications to incorporate muscle
and tumor compartments, respectively, for describing the biodis-
tribution of NMs following IV administration in healthy and tumor-
bearing mice. Specifically, the permeability-limited PBPK model for
healthy mice contained eight compartments, including plasma, lungs,
liver, kidneys, spleen, brain, muscle, and remaining tissues (i.e., pooled
other tissues) (Figure 2A). Since tumor cells were inoculated
subcutaneously into nude mice according to most tumor delivery
studies, this present study included muscle as an additional
compartment in the PBPK schematic (Figure 2B). Moreover, the
present model considered uneven distribution between capillary
blood and tissue, membrane-limited transcapillary transport, as well as
nonlinear endocytic uptake and first-order exocytic release of
administered AuNPs in order to describe the permeability-limited
pharmacokinetics and tissue distribution of NMs in healthy mice.
Besides plasma and brain, using standard PBPK modeling practice, all
compartments were divided into three subcompartments: capillary
blood, tissue interstitium, and endocytic/phagocytic cells (PCs)
(Figure 2A). Similarly, to describe the NM distribution to tissues as
well as to tumor microenvironment in tumor-bearing mice, a tumor
compartment was subcompartmentalized as capillary blood, tumor
tissue interstitium, and tumor cells (TCs) (Figure 2B). Pharmaco-
kinetic data from both healthy and tumor-bearing mice were extracted
using the WebPlotDigitizer (Version 4.1, Austin, TX, https://apps.
automeris.io/wpd/) and provided in Supporting Information Excel
files E3 and E4. Other experimental details extracted from original
pharmacokinetic studies were documented and/or tabulated in
Supporting Information Excel files E1 and E2 as well as Table S1.
Main Mathematical Description of the Model. Based on our

earlier study,20 endocytic uptake of NMs was more accurately
described by the Hill function. Therefore, we employed the Hill
function to describe the endocytic/phagocytic or tumor uptake of
NMs as expressed in the following equation:
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particular time t (per h), Kmax,i is the maximum uptake rate constant
(per h), t50,i represents the time reaching half-maximum uptake rate
(h), and ni is the Hill coefficient (unitless).
Furthermore, the distribution of NMs among subcompartments of

capillary blood, tissue interstitium, and PCs/TCs in lungs, spleen,
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where ABlood,i and AT,i represent amounts of NMs in the capillary
blood and interstitium of tissue i (μg), APC,i and ATC are amounts of
NMs being taken up by PCs or TCs (μg), Qi is the regional blood
flow to tissue i (L/h), Ca is the concentration of NMs in the arterial
plasma (μg/L), CVi is the concentration of NMs in the venous plasma
in tissue i (μg/L), PAi is approximated to the product of permeability
coefficient between capillary blood and tissue membrane (PACi,
unitless) and regional blood flow Qi (L/h) of tissue i (L/h), CT,i is the
concentration of NMs in the tissue interstitium i (μg/g), Pi is the
tissue:plasma distribution coefficient for tissue i (unitless), and Kre,i is
the release rate constant of NMs by PCs or TCs to the tissue
interstitium i (per h). Similar equations were used to simulate the
distribution of NMs among different subcompartments in the liver.
The only difference in the liver compared to other organs is that the
liver has Kupffer cells which are liver macrophages that can directly
phagocytize NMs from the capillary blood subcompartment since
they are located in the liver sinusoids and directly exposed to
blood.258−260

PBPK Model Calibration and Evaluation. All simulations and
model calibration were performed using Berkeley Madonna (Version
8.3.23.0, University of California at Berkeley, CA, USA) to obtain
visually reasonable fits to the pharmacokinetic data from healthy and
tumor-bearing mice. The model for healthy mice was calibrated with
the pharmacokinetic data in mice up to 168 h after IV administration
with 13 nm PEG-coated AuNPs.31 To develop the most parsimonious
model following IV administration, most physiological parameters
were kept consistent with the literature.261,262 For physicochemical
parameters, distribution, and permeability coefficients, values
obtained from our previous study20 were used as references for
further optimization for the present PBPK models in healthy mice
using visual fitting and the Curve Fitting Module in Berkeley
Madonna. Similarly, other physicochemical parameters were esti-
mated using visual fitting and the Curve Fitting Module, including
cellular uptake and release rates by PCs of the lungs, liver, spleen,
kidneys, muscle, and remaining tissues as well as excretion rate
constants to establish the PBPK model in healthy mice.

The healthy mouse model was expanded to include a tumor
compartment to describe NM biodistribution following IV injection
in tumor-bearing mice. Except for tumor-related parameters, all
physiological as well as NM-specific parameters for other organs/
tissues remained the same as those used in the healthy mouse PBPK
model. The tumor-related parameters included fractional blood flow
to tumor (QTC), fractional tumor weight (VTC), fractional blood
volume in the tumor tissue (BVT), distribution coefficient (PT),
permeability coefficient to the tumor tissue (PATC), maximum NM
uptake rate constant for TCs (Kmax,T), time reaching half-maximum
NM uptake rate for TCs (t50,T), Hill coefficient for the uptake by TCs
(nT), and NM release rate constant from TCs to the tumor
interstitium (Kre,T). Specifically, VTC was estimated based on the
original tumor-bearing study. QTC and BVT were assigned with very
small numbers initially (∼0.02−0.03) as the blood flow inside and
around the tumor only accounts for a small fraction of the cardiac
output and optimized afterward using visual fitting and the Curve
Fitting Module. Other tumor-related parameters (PT, PATC, Kmax,T,
t50,T, nT, and Kre,T) were obtained similarly. The calibrated PBPK
models in tumor-bearing mice were then used to predict short-term
(24 h) and long-term (168 h) delivery efficiency and kinetics for each
NM to the tumor. The PBPK model example code from a
representative study is provided in the Supporting Information.

The performance of the PBPK models for both healthy and tumor-
bearing mice was evaluated by comparing model simulations with
measured pharmacokinetic data based on the criteria described in the
World Health Organization (WHO) guideline.263 Specifically, if the
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simulated tissue distribution matched the measured kinetic profile
visually and the simulated values were within a factor of 2 of the
measured values, the model was considered acceptable. In addition,
the goodness of fit between log-transformed values of measured and
predicted tissue distribution (i.e., μg/g tissue, %ID, or %ID/g tissue)
were further evaluated by analyzing coefficient of determination (R2)
using simple linear regression with an R2 ≥ 0.75 of predicted over
measured values considered adequate.
Sensitivity Analysis. Local sensitivity analyses were conducted to

identify highly influential parameters (e.g., physiological and NM-
specific parameters) governing the overall tissue distribution and
tumor delivery efficiency after IV administration of various NMs. One
representative study by Karmani et al.,32 with an adequate simulation
of AuNP distribution to tumor compartment for up to 168 h (R2 >
0.95), was selected to estimate the dose metrics for target organs or
tissues. Specifically, each parameter (p) was increased in increments
of 1% and the corresponding AUC (%ID × h) of NMs in the venous
plasma, liver, spleen, kidneys, and tumor were computed at 24 h and
168 h after IV administration. Highly influential parameters identified
by 24 and 168 h AUC estimates were compared to determine the
differential effects of parameters on the short-term and long-term
internal dose metrics, respectively. NSC was calculated by dividing the
relative change in AUC (dAUC/AUC) with the relative change in
each parameter (dp/p).20 Parameters with at least one absolute value
of the calculated NSC around or greater than 0.3 (i.e., |NSC| ≥ 0.3)
were considered sensitive.
Subgroup Statistical Analyses. To compare with the delivery

efficiency results reported by Wilhelm et al. from 2005 to 2015,14 the
present study used different approaches to calculate the delivery
efficiency for each data set, including (1) the maximum tumor
delivery efficiency of the simulated delivery efficiency kinetics using
the calibrated PBPK models (DEmax, %ID); (2) AUC-based tumor
delivery efficiency estimated based upon PBPK simulations, i.e., AUCs
of tumor delivery efficiency estimated at 24 h, 168 h, and the last
sampling time point (Tlast) in accordance with the original study (%ID
× h) and then divided by time (h) to generate DE24, DE168, and
DETlast (%ID), respectively; and (3) the tumor delivery efficiency
estimated at Tlast based upon original tumor pharmacokinetic data
(DETlast_PK, %ID) using a noncompartmental linear trapezoidal
integration method as used by Wilhelm et al.14 Subsequently, all
tumor delivery efficiency data were categorized into varied subgroups,
including the year of publication, physicochemical properties of
administered NMs (i.e., shape, size, and ζ potential), targeting
strategy, type and core materials of delivered NMs, method of
inoculation, as well as inoculated cancer cell types.14 The ζ potentials
measured at pH 7.4 of <−10 mV, −10 to 10 mV, and >10 mV were
categorically defined as negative, neutral, and positive, respectively.14

Following subgrouping, unpaired parametric t-test assuming unequal
variances (Welch’s t-test) and nonparametric rank-sum test (Mann−
Whitney test) were implemented to examine, respectively, whether a
significantly higher mean and median tumor delivery efficiency can be
observed by comparing two subgroups. Welch’s t-test and Mann−
Whitney test were performed using GraphPad Prism (Version 6.05,
GraphPad Software Inc., La Jolla, CA).
Multivariable linear regression was used to determine the potential

effects of various physicochemical characteristics, including the
hydrodynamic size, ζ potential, type of NMs, targeting strategies,
cancer types, and tumor models on tumor delivery efficiency. Tests
for normality were performed first for both delivery efficiencies with
or without log transformation to identify dependent variables (i.e.,
delivery efficiencies) with (or at least more like) normal distributions.
Based on the results from the normality test, the log-transformed
delivery efficiencies were employed for a one-way ANOVA, simple
linear regression, and multivariable linear regression analyses. One-
way ANOVA and simple linear regression were performed prior to
multivariable linear regression to examine the significance (P < 0.05)
of categorical and continuous variables, respectively. Statistical
analyses, including normality test, one-way ANOVA, simple and
multivariable linear regression, were conducted using R language
(Version 3.6.0).

Specifically, variables including physicochemical properties of
delivered NMs (e.g., log-transformed hydrodynamic diameter (log-
(HD)), ζ potential (ZP), and shape) as well as type of NMs (ONMs
or INMs) (Type), core material of ONMs or INMs (MAT), targeting
strategy (TS), cancer type (CT), and tumor model (TM) were
considered for one-way ANOVA, simple, and multivariable linear
regression analyses. In total, we report 80 regression models from 5
log-transformed tumor delivery efficiencies (DETlast, DE24, DE168,
DEmax, and DETlast_PK) for 4 different types of NMs (Au NMs, INMs,
ONMs, and all NMs). For a specific response of delivery efficiency
from a particular type of NMs, we have included 4 regression models,
i.e., full, best, full confident, and best confident models. The full and
best regression models were based on all the 376 data sets. The full
confident and best confident regression models were computed based
on delivery efficiency data that were confidently predicted (only 313
data sets), e.g., the simulations visually matched the measured tumor
distribution kinetics reported by original literature and with either R2

≥ 0.75 or <10% difference by comparing DETlast to DETlast_PK. This
difference was estimated at Tlast (up to 168 h) and calculated using the
PBPK model versus a nonphysiologically based linear trapezoidal
integration method. The best and best confident regression models
were determined using a stepwise approach whenever the values of
Akaike information criterion (AIC) reached the smallest among all
established regression models. Other critical statistical criteria,
including R2, adjusted R2 (Adj-R2), P-value, and Bayesian information
criterion (BIC) obtained from simulation outputs were used to help
determine the appropriateness in selected regression models for
predicting tumor delivery efficiency. Moreover, to explore the
potential association of NM tumor delivery efficiency with tumor
microenvironment and NM properties, a multivariable linear
regression analysis was conducted to explore the relationship between
log-transformed tumor delivery efficiency (DETlast) and 4 nano-
particle-specific parameters at tumor site (PT, PATC, Kmax,T, and
Kre,T) using AuNPs as a case study. This analysis was done only for
AuNPs to avoid confounding by different types of NMs.
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Figures S1−S3, as well as Tables S1−S9 include all the
necessary information on pharmacokinetic data in
tumor-bearing mice, the results for PBPK modeling
and simulation in both healthy and tumor-bearing mice,
local sensitivity analyses, Welch’s t-tests, rank-sum tests,
simple linear regression analyses, one-way ANOVA tests,
multivariable linear regression analyses, and subgroup
analyses. Example code for PBPK modeling in tumor-
bearing mice is provided (PDF)
E1: Summarized information including physicochemical
properties of administered INMs, implanted tumor type,
site, size, and body weight as well as the injected dose for
tumor-bearing mice, estimated tumor delivery efficien-
cies, and adequacy in the model simulation of NM
kinetics in the tumor (XLSX)
E2: Summarized information including physicochemical
properties of administered ONMs, implanted tumor
type, site, size, and body weight as well as the injected
dose for tumor-bearing mice, estimated tumor delivery
efficiencies, and adequacy in the model simulation of
NM kinetics in the tumor (XLSX)
E3: PBPK simulations of pharmacokinetics in healthy
mice intravenously injected with 13 nm AuNPs. In
addition, PBPK simulations of tumor pharmacokinetics
and associated tumor- and NM-specific parameters for
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INMs following systemic administration in tumor-
bearing mice were included (XLSX)
E4: PBPK simulations of tumor pharmacokinetics and
associated tumor- and NM-specific parameters for
ONMs following systemic administration in tumor-
bearing mice (XLSX)
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