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A B S T R A C T

Background: Environmental exposure to perfluorooctane sulfonate (PFOS) is associated with various adverse
outcomes in humans. However, risk assessment for PFOS with the traditional risk estimation method is faced
with multiple challenges because there are high variabilities and uncertainties in its toxicokinetics and toxicity
between species and among different types of studies.
Objectives: This study aimed to develop a robust probabilistic risk assessment framework accounting for inter-
species and inter-experiment variabilities and uncertainties to derive the human equivalent dose (HED) and
reference dose for PFOS.
Methods: A Bayesian dose-response model was developed to analyze selected 34 critical studies, including
human epidemiological, animal in vivo, and ToxCast in vitro toxicity datasets. The dose-response results were
incorporated into a multi-species physiologically based pharmacokinetic (PBPK) model to reduce the tox-
icokinetic/toxicodynamic variabilities. In addition, a population-based probabilistic risk assessment of PFOS was
performed for Asian, Australian, European, and North American populations, respectively, based on reported
environmental exposure levels.
Results: The 5th percentile of HEDs derived from selected studies was estimated to be 21.5 (95% CI: 10.6–36.3)
ng/kg/day. After exposure to environmental levels of PFOS, around 50% of the population in all studied po-
pulations would likely have > 20% of increase in serum cholesterol, but the effects on other endpoints were
estimated to be minimal (< 10% changes). There was a small population (~10% of the population) that was
highly sensitive to endocrine disruption and cellular response by environmental PFOS exposure.
Conclusion: Our results provide insights into a complete risk characterization of PFOS and may help regulatory
agencies in the reevaluation of PFOS risk. Our new probabilistic approach can conduct dose-response analysis of
different types of toxicity studies simultaneously and this method could be used to improve risk assessment for
other perfluoroalkyl substances (PFAS).
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1. Introduction

Perfluorooctane sulfonate (PFOS) has been produced since the
1950s and are widely used in commercial and industrial products, in-
cluding cookware, furniture, household cleaners, clothing and fire-
fighting foam (Paul et al., 2009; Sunderland et al., 2019). Despite the
production and the use of PFOS has been phased out in the U.S. since
2002 (U.S. EPA, 2009a; FDA, 2011; Renner, 2008), a growing number
of studies have shown it is still frequently detected in the environment
(Hu et al., 2016; Sunderland et al., 2019) and human samples (Calafat
et al., 2007; Mamsen et al., 2019; Pérez et al., 2013). Because of PFOS’
widespread presence and worldwide exposure of humans, there is an
increasing concern on its potential adverse health effects.

A growing number of studies in rodents and non-human primates
have reported that excessive PFOS exposure causes hepatic effects,
endocrine effects, immunological dysfunction, and developmental ef-
fects (Zeng et al., 2019). For example, numerous studies have shown
that short-term (0.14–6.34 mg/kg/day for 4 weeks) (Curran et al.,
2008), subchronic (0.04–1.33 mg/kg/day for 14 weeks) (Seacat et al.,
2003) and long-term PFOS exposure (0.5–20 mg/kg/day for 105 weeks)
(Butenhoff et al., 2012) cause hepatic toxicities, including increase of
liver weight, histopathological changes, or decrease of serum choles-
terol. Regarding effects on the endocrine and immune systems, PFOS
exposure decreases the total thyroxine (T4) at the doses of ≥1.33 mg/
kg/day and ≥1.43 mg/kg/day in male and female rats, respectively
(Curran et al., 2008), which is consistent with the other studies in rats
and mice (Lau et al., 2003; Seacat et al., 2003). For developmental
effects, several subchronic studies (63–84 days) in rats (dose range of
0.1–10 mg/kg/day) and mice (dose range of 1–20 mg/kg/day) have
shown that gestational exposure to PFOS results in decreased pre- and
post-natal survival of offspring, and other effects (e.g., reduced fetal
weight, delayed bone ossification, and reduced neonatal survival)
(Butenhoff et al., 2009; Lau et al., 2003; Luebker et al., 2005a, 2005b).
In humans, the majority of published epidemiological studies (EFSA,
2018; Eriksen et al., 2013; Frisbee et al., 2010; Geiger et al., 2014;
Nelson et al., 2010; Steenland et al., 2009) have reported a positive
association between PFOS and increases in total cholesterol in the
general populations at mean serum levels of 0.0224–0.0361 μg/mL. For
in vitro studies, the potential toxicities of PFOS have also been examined
via high-throughput screening in the U.S. Environmental Protection
Agency (EPA) ToxCast program with a broad dose range (1 nM to
100 µM), and PFOS exposure has been associated with several toxicity
endpoints, including PPAR/PXR/RAR receptors, neurotoxicity, aquatic
toxicity, immunotoxicity, endocrine disruption, and activation of cy-
tochrome P450s (U.S. EPA, 2016).

The health-protective exposure values (e.g., reference dose [RfD] or
tolerable daily intake [TDI]) have been developed to be protective for
chronic exposure to PFOS based on animal or human studies. For ex-
ample, U.S. EPA developed a RfD of 77 ng/kg/day in 2009 based on
decreased serum T3 levels observed in a 28-week monkey study (U.S.
EPA, 2009b). Accounting for the differences of toxicokinetics for PFOS
between animals and humans, U.S. EPA released a new RfD of 20 ng/
kg/day in 2016 based on a rat developmental study (U.S. EPA, 2016).
Most recently, based on human epidemiological studies, European Food
Safety Authority (EFSA) released a TDI of 1.8 ng/kg/day in 2018 (EFSA,
2018). Both estimations of points of departure (PODs), based on whe-
ther animal or human studies, have their respective strengths and
limitations. For example, the differences of toxicokinetic properties for
PFOS between animals and humans make it difficult to extrapolate
dosimetry from animal studies to humans. Epidemiological studies are
limited in their ability to establish causality for the derivation of RfD.
Given these differences in the estimation of health-protective exposure
values between epidemiological and experimental studies, a key issue is
how to create an integrated approach that can unify different toxicity
endpoints from different types of critical studies to support the de-
termination of health-protective exposure values. In addition, the

dosimetry extrapolation across species accounting for inter/intra-spe-
cies toxicokinetic differences needs to be considered.

In order to address the abovementioned knowledge gaps, this study
developed a Bayesian dose-response model to analyze a comprehensive
set of toxicity data, including human epidemiological studies, animal in
vivo studies, and in vitro assays from U.S. EPA ToxCast program to de-
termine probabilistic PODs for PFOS for each endpoint. A recently de-
veloped multi-species PBPK model for PFOS (Chou and Lin, 2019) was
then used to convert the PODs into human equivalent doses (HEDs)
based on U.S. EPA’s guidance (U.S. EPA, 2016). Finally, this probabil-
istic risk assessment approach was applied to conduct a population-
based risk estimation based on the endpoints from human and ToxCast
studies and based on the reported serum PFOS concentrations in the
general populations from different countries. All model codes and raw
data are provided in the Supplemental Materials to allow to reproduce
our results and facilitate the application and extrapolation of this fra-
mework to other perfluoroalkyl substances (PFAS).

2. Methods

2.1. Study framework

Fig. 1 represents a conceptual framework depicting the general
process of this study, including hazard identification, dose-response
analysis, exposure assessment, and risk characterization. Of note, this
study integrated Bayesian dose-response analysis (Chiu et al., 2017;
Shao and Shapiro, 2018) with our recently developed multi-species
PBPK model (Chou and Lin, 2019) to derive HEDs based on human
epidemiological, animal in vivo toxicity, and ToxCast in vitro data.

2.2. Hazard identification

Studies were included in our analyses based on the following con-
siderations. First, to consider the toxicodynamic variability between
study populations, between in vitro and in vivo, and between animals
and humans, we included diverse toxicity studies ranging from in vitro,
animal in vivo toxicity, to human epidemiological studies. Second, each
selected study should include at least 3 dose groups (or concentration
groups) with at least one group that produced an effect that was more
than 10% difference from the control group. This is needed in order to
generate a meaningful nonlinear dose-response curve. Third, the de-
velopmental toxicity studies were excluded in our analyses because our
PBPK model is only used for adult animals and humans (Chou and Lin,
2019). Fourth, the selection of endpoints was dependent on the weight
of evidence provided by peer-reviewed literature. To be more specific,
recent EFSA report has concluded that it is likely there is a causal as-
sociation between PFOS exposure and increased serum total cholesterol
based on a comprehensive review for human epidemiological studies
(EFSA, 2018). Accordingly, this study collected the same three critical
human studies used by EFSA (Eriksen et al., 2013; Nelson et al., 2010;
Steenland et al., 2009) and one additional study (Château-Degat et al.,
2010) that met the selection criteria of EFSA (i.e., over 500 subjects in
the cohort study), so that our results would be comparable to the gui-
dance values from EFSA. While selection bias may occur, EFSA expert
panel has concluded that it is unlikely the use of these studies will affect
the association between PFOS and increased serum total cholesterol
(EFSA, 2018).

In animals, increased liver weight has been concluded as the hall-
mark response following PFOS exposure (EFSA, 2018; U.S. EPA, 2016).
Therefore, animal studies reporting increased liver weight were con-
sidered in the dose-response analysis. The selected animal and human
studies are listed in Table 1. Ideally, chronic animal toxicity studies (if
available) should be used to derive POD and RfD, but the selected an-
imal studies were subchronic toxicity studies with exposure duration
ranging from 28 to 182 days. These subchronic studies were selected
due to lack of chronic studies that were suitable for dose-response
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analysis for the endpoint of increased liver weight. In the literature, we
only found one chronic study in which rats were fed with 0, 0.5, 2, 5,
and 20 ppm diet for up to 104 weeks and animals were sacrificed on
Weeks 4, 14, and 53 (interim sacrifices), with terminal sacrifice be-
tween Weeks 103 and 106 (Butenhoff et al., 2012; Seacat et al., 2003).
Liver weight data were not available on Weeks 103–106. The liver
weight was significantly increased on Week 53, but the data were only
available at the control and 20 ppm groups, thus these data were not
suitable for dose-response analysis (Butenhoff et al., 2012; U.S. EPA,
2016). Also, these subchronic studies were selected because they were
used as critical studies for the derivation of RfD by U.S. EPA (U.S. EPA,
2016) and other agencies (UK COT, 2006; EFSA, 2008). We chose the
same critical studies so that our results would be comparable to EFSA’s
and U.S. EPA’s guidance values. In addition, an uncertainty factor for
extrapolation from the subchronic to the chronic exposure duration of
1-fold, rather than the default uncertainty factor of 10-fold for many
other chemicals, was used in the present study because the PODs were
based on the average serum concentrations and this uncertainty factor
was used and well justified in the latest U.S. EPA guidance document
(U.S. EPA, 2016).

In line with the toxicology testing paradigm in the 21st century
proposed by the National Research Council (NRC) and implemented by
multiple U.S. federal agencies (i.e., the Tox21 program) (Kavlock et al.,
2019; NRC, 2007), the present study incorporated biochemical- and
human cell-based high throughput in vitro assays from U.S. EPA’s
ToxCast program into the dose-response analysis. Note that not all
biological pathway perturbations would lead to adverse human health
effects (Krewski et al., 2019). Biological pathways that are expected to
lead to adverse health effects in vivo when they are sufficiently altered
are termed toxicity pathways. Based on the recent U.S. EPA report (U.S.
EPA, 2016), the present study selected ToxCast in vitro assays that are
related to PFOS toxicity and have been used in the U.S EPA risk as-
sessment so that our results are comparative to the results from U.S.
EPA. These representative assays evaluate different molecular events to
be associated with several adverse effects based on the categories de-
fined by U.S. EPA guidance (U.S. EPA, 2016), including “PPAR/PXR/
RAR Receptors”, “Neurotoxicity”, “Immunotoxicity”, and “Endocrine
Disruption”. In addition, the PFOS-activated assays also involved the
effects of oxidative stress, mitochondrial toxicity, cell loss, and mitotic
arrest. These assays were categorized as “cellular response” in our
study. A list of all selected studies is presented in Tables 1 and 2. Ad-
ditional description of selected studies is provided in the

Supplementary Materials.

2.3. Dose-response analysis

2.3.1. Data preprocessing
Since the dose-response data were of different types with different

endpoints and from different experiments/sources, we normalized the
unit of response across all studies for the purpose of generalization.
Based on the definition of benchmark dose (Haber et al., 2018), the risk
(additional risk) can be expressed as the incremental changes over
background. All the data included in this study have internal references,
such as the control group in the human epidemiological studies and
animal in vivo studies, and fold change in ToxCast in vitro data. To ac-
count for this in the model, we normalized the measured response as:

= ×
r r

r
y 100i j

i j j

j
,

, 0,

0, (1)

where yi j, represents as the incremental changes (percentage of incre-
mental increase of the response over the control group at dose d0) at
dose group i in experiment j; ri j, is the response at exposure group i in
experiment j; and r j0, is the response at the control group in experiment
j. This approach normalizes the background risk to be 0. In the human
studies, the 170 mg/dL was used as r j0, based on the definition of normal
lipid value recommendation from American Heart Association (Grundy
et al., 2019).

Two different dose-response models were used in this work, a
modified version of the Hill model recommended by the U.S. EPA BMD
guidance (U.S. EPA, 2012) was adopted to describe the continuous
dose-response data in humans,

=
+

f d b d
a d

( ; ) · c

c c (2)

and a logarithmic form of the Hill model was used to fit the dose-re-
sponse data of animal in vivo and ToxCast in vitro studies:

=
+

f d b
c d a

( ; )
1 exp{ [log( ) log( )]} (3)

where f d( ; ) represents the expected response at dose d, and =
(a b c, , ). In both models, the parameter a represents the concentration
or the dose achieving the half-maximal response (i.e., EC50), b is the
maximum response (i.e., Emax), c is the Hill coefficient (reflects the
shape of the curve). To evaluate the model performance, we calculated

Fig. 1. Schematic illustration of the study framework. (A) The first step of hazard identification is to evaluate the potential toxicity and collect the dose-response
datasets from human, animal and ToxCast in vitro studies. (B) The second step is to construct the Bayesian dose-response model to derive EC10 (i.e., effective
concentration or dose resulting in 10% of changes) as PODs (i.e., point of departures). (C) A multi-species PBPK model was used to convert the PODs into the HED
(i.e., human equivalent dose) with a reverse dosimetry approach. (D) Finally, the risk can be characterized using the exceedance probability approach.
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the adjusted R-squared (Adj. R2) and relative absolute error (RAE) to
provide a quantitative measure in the model evaluation. An estimated
Adj R2 > 0.5 and RAE < 1 indicate that the dose-response model fits
with the measured data adequately.

2.3.2. Bayesian dose-response model
In this study, we proposed a Bayesian dose-response model to

quantify inter-study/population variability through placing a hier-
archical structure on parameters “a” in the Eqs. (2) and (3). In the
hierarchical structure (Fig. S1 in Supplementary Materials), our pro-
posed model accounts for variability within each experiment (experi-
ment-specific level), variability between studies (study-specific level),
and variability in the population (population level). From Bayes’ the-
orem, the joint posterior distribution of the parameter
p a µ b c y( , , , , )j a a ij is proportional to the likelihood of observed data
multiplied by the prior distribution of the parameters:

p a µ b c y p y a µ b c p a µ p µ p p b p c( , , , , ) ( , , , , )· ( , )· ( )· ( )· ( )· ( )j a a ij ij j a a j a a a a

(4)

where the p y a µ b c( , , , , )ij j a a is the likelihood function, which can be
written as a logarithmic format log p y a µ b c[ ( , , , , )]ij j a a
N log f d a µ b c( [ ( ; , , , , )], )ij j a a ij by normal distribution with variance

over the dose levels d. To be more specifically, the dose-response model
f based on a set of prior parameters (a µ a c, , , ,j a a ) was used to predict
the measured response yij in the study j at the dose level i, with the
random effects N (0, )ij

2 . The prior distribution of informative para-
meter “a” was assigned as lognormal prior, which can be denoted as
joint prior probability =p a µ LN µ( , ) ( , )j a a a a . The use of lognormal
distribution ensured positive values of the parameters and realistic
skewness. Each of the hyper-parameters such as the population mean µa
and standard deviation a of informative parameter a was assigned an
independent prior distribution with half-normal and half-Cauchy dis-
tribution, which specify as: =p µ N S( ) (0, )a µa and

=p Cauchy S( ) (0, )a a . We set Sµa as the arbitrary values to reflect
vague (flat) priors, and assigned S c as the weakly informative priors
based on previous studies (Gelman, 2006). Parameters “b” and “c” in
Eq. (3) were distinguished as non-informative priors with uniform
distribution with data-driven upper bounds and lower bounds such as

=p b Unif b b( ) ( , )lower upper and =p c Unif c c( ) ( , )lower upper . The settings of
priors and details on the uniform distributions used in the dose-re-
sponse model were described in detail in the Supplemental Materials
(Section 2.1 Settings of priors for model parameters).

The proposed model was programed with R (version 3.5.3) using R
package RStan (Carpenter et al., 2017). The MCMC sampling process
consisted of four different Markov chains sampled for 10,000 iterations
each. The first 5000 iterations for each chain was disregarded as burn-
in, resulting in a posterior sample size of 5000. The convergence of the
MCMC sampling was judged by the potential scale reduction statistic R
provided from the output of Rstan.

2.4. Exposure assessment: multi-species PBPK modeling-based reverse
dosimetry analysis

In the exposure assessment, the PBPK model was used for the esti-
mation of human equivalent doses (HEDs) based on the EC10 values
derived from human, animal and ToxCast in vitro studies using a reverse
dosimetry approach (Cheng et al., 2018; Lin et al., 2016; Lyons et al.,
2008; Tan et al., 2007; Wambaugh et al., 2018; Wetmore et al., 2012).
The recently validated multi-species PBPK model (Chou and Lin, 2019)
was implemented here to quantify the internal dosimetry and reduce
the uncertainty of interspecies toxicokinetics for PFOS. Note that for
ToxCast in vitro studies, the in vitro EC10 concentrations were based on
the nominal concentrations in the culture medium based on previous in
vitro to in vivo extrapolation (IVIVE) studies (Wetmore et al., 2012,
2013, 2015). The use of nominal concentrations in this analysis is
mainly because only the nominal concentrations are available from theTa
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ToxCast program. Also, there are a variety of in vitro assays, including
cell-free biochemical and cell-based assays with different types of cells
(e.g., transformed and primary cells), which makes it challenging to
assess the free concentration of the chemical in each assay. This lim-
itation of using in vitro assays, especially the nominal concentration in
risk assessment is further discussed in the Discussion section.

Two different dose metrics, average serum concentration (ASChuman)
and steady-state serum concentration (Css) were used in the reverse
dosimetry analysis to convert the EC10 from human epidemiological
studies and ToxCast in vitro studies, respectively, into the HED using Eq.
(5) (Rotroff et al., 2010; Wetmore et al., 2012). Note that the con-
sideration of the free concentration (or unbound concentration) of
PFOS in the plasma is important in the calculation of ASChuman and Css;
this has been considered and described in detailed in our PBPK mod-
eling paper (Chou and Lin, 2019).

= µ
or µ

HED
day

Human (ng mL) or ToxCast EC10 ( M)·
1 day

ASC (ng mL) C ( M)ss

mg
kg

mg
kg

human

(5)

In the Eq. (5), HED is linearly related to the human (ng mL) and in
vitro EC10 (µM) and inversely related to the ASChuman or Css after ex-
posure to a daily dose of 1 mg/kg/day. To calculate ASChuman, we firstly
simulated the plasma AUC at a dose of 1 mg/kg/day for 50 years, and
then calculated using the equation (i.e., ASChuman [ng/mL] = AUC [µg/
mL * h] * 1000/(Exposure duration [days] * 24 h/1 day)) based on U.S.
EPA report (U.S. EPA, 2016). Similarly, Css was obtained via a PBPK
simulation at the dose of 1 mg/kg/day for 50 years. Based on the as-
sumption of IVIVE, the HED derived from in vitro studies was used to
assess whether in vitro bioactivity would be expected at the dose-
equivalent level of human exposure.

For animal studies, since the target organ is liver, the HED value was
estimated based on the dosimetry in liver according to the following
formula:

=HED
day

Animal EC10 mg
kg

day · ALC (ng mL)
ALC (ng mL)

mg
kg animal

human (6)

To calculate the HED, the AUC values in liver corresponding to a
daily dose of 1 mg/kg/day for one year was firstly predicted in animals
using the multi-species PBPK model, and then the average liver con-
centration in animals (ALCanimal) and humans (ALChuman) was calcu-
lated from the ASC equation (described above). Then HED was calcu-
lated using animal EC10 distributions multiplied the ratio of ALC values
between animals and humans (Andersen et al., 2002; Chou and Lin,
2019). The purpose of calculating ALCanimal/ALChuman was to account
for the interspecies toxicokinetic uncertainty/variability in the PFOS
dosimetry. Also, the endpoint of increased liver weight in animals is
likely a function of cumulative dose, and ALC is a relatively stable re-
presentative dose metric because ALC is derived from AUC (i.e., cu-
mulative dose) divided by the exposure duration (U.S. EPA, 2016). The
calculation of ALCanimal/ALChuman was based on 1-year exposure in rats
and 50-year exposure in humans in order for PFOS to reach steady-state
in both rats and humans. By linking the probabilistic EC10 (generated
from Bayesian dose-response modeling) and reversed dosimetry equa-
tions (Eqs. (5) and (6)), the probabilistic HED based on human, animal
and in vitro studies was derived. The estimated Css, AUC, ASC and ALC
values were summarized in Table S1.

2.5. Risk characterization

2.5.1. Conservative point of departure (POD) determination
To determine the conservative HEDs based on the comprehensive

toxicity studies, we derived the threshold based on the probabilistic
HEDs. Subsequently, a cumulative distribution function (CDF) of HEDs
was constructed by assuming a Weibull distribution using the R package
“fitdistrplus” (Delignette-Muller and Dutang, 2015). The threshold dose
(TD) value was determined as the HED values at 5th percentile.

2.5.2. Population-based risk assessment
The concept of probabilistic risk assessment has been previously

reported in Chiu and Slob (2015). Several essential elements in prob-
abilistic risk assessment include uncertainty, magnitude of effects, and
population incidences (i.e. fraction of the population affected). To re-
fine risk characterization, the exceedance probability profile that plots

Table 2
Key information on the selected ToxCast in vitro assays in the dose–response analysis for PFOS.

Assigned no. ToxCast assay Normalization Cell type/Tissue Gene Symbol Endpoint category

ToxCast_1 ATG_PPRE_CIS_up log2-fold-induction Human HepG2a cell line PPARE PPAR activation
ToxCast_2 ATG_PPARa_TRANS_up log2-fold-induction Human HepG2 cell line PPARA PPAR activation
ToxCast_3 ATG_PPARg_TRANS_up log2-fold-induction Human HepG2 cell line PPARG PPAR activation
ToxCast_4 NVS_GPCR_h5HT5A Percent activity Cell-free assay HTR5A Neurotoxicity
ToxCast_5 NVS_GPCR_h5HT6 Percent activity Cell-free assay HTR6 Neurotoxicity
ToxCast_6 NVS_GPCR_h5HT7 Percent activity Cell-free assay HTR7 Neurotoxicity
ToxCast_7 NVS_GPCR_hAdoRA2a Percent activity Cell-free assay ADORA2A Neurotoxicity
ToxCast_8 NVS_GPCR_hAdra2C Percent activity Cell-free assay ADRA2C Neurotoxicity
ToxCast_9 NVS_GPCR_hAdrb1 Percent activity Cell-free assay ADRB1 Neurotoxicity
ToxCast_10 BSK_SAg_CD40_down log10-fold-induction HCASMCb CD40 Immunotoxicity
ToxCast_11 BSK_BE3C_IP10_down log10-fold-induction HBEpCc CXCL10 Immunotoxicity
ToxCast_12 BSK_BE3C_IL1a_down log10-fold-induction HBEpC IL1A Immunotoxicity
ToxCast_13 BSK_LPS_IL8_up log10-fold-induction HCASMC CXCL8 Immunotoxicity
ToxCast_14 BSK_3C_uPAR_down log10-fold-induction HCASMC PLAUR Immunotoxicity
ToxCast_15 BSK_CASM3C_VCAM1_down log10-fold-induction HCASMC VCAM1 Immunotoxicity
ToxCast_16 OT_ER_ERaERb_0480 Percent activity HEK293cell line ESR α Endocrine disruptors
ToxCast_17 ATG_ERa_TRANS_up log2-fold-induction Human HepG2 cell line ESR α Endocrine disruptors
ToxCast_18 ATG_ERE_CIS_up log2-fold-induction Human HepG2 cell line ESR α Endocrine disruptors
ToxCast_19 NVS_NR_hTRa_Antagonist Percent activity Cell-free assay THRA Endocrine disruptors
ToxCast_20 APR_HepG2_CellLoss_24h_dn log2-fold-induction Human HepG2 cell line – Cytotoxicity/Cellular response
ToxCast_21 APR_HepG2_MitoMass_24h_dn log2-fold-induction Human HepG2 cell line – Mitochondria/Cellular response
ToxCast_22 APR_HepG2_OxidativeStress_24h_up log2-fold-induction Human HepG2 cell line – Oxidative stress/Cellular response
ToxCast_23 APR_HepG2_p53Act_24h_up log2-fold-induction Human HepG2 cell line TP53 DNA binding/Cellular response
ToxCast_24 APR_HepG2_MitoticArrest_24h_up log2-fold-induction Human HepG2 cell line – Cell cycle/Cellular response

a HepG2: Human hepatocellular carcinoma cells.
b HCASMC: Human coronary artery smooth muscle cells.
c HBEpC: Primary human bronchial epithelial cells.
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the cumulative probability of exceedance versus the magnitude of ef-
fects was generated by integrating the distributions of exposure doses
and corresponding effects estimated from the Bayesian dose-response
model. The exceedance probability can be expressed as:

=EP x D f x d x d D( ) · ( ) ( ) ( )
x D0

1

(7)

where D is probability density function (PDF) of internal dose metric of
serum PFOS concentrations reported from the general populations in
Asian, Australia, Europe and North America, respectively and fitted by
lognormal distribution (Table S2). The f x( )D is the probability dis-
tribution of population having the certain incremental effects × at the
probability of internal dose (D), which was estimated from the dose-
response model f d( ; ). The exceedance probability EP (x) can be es-
timated by integrating the f x d x( ) ( )x D over the exposure probability
D, which represents the probability (i.e. fraction of population) having
the effect of a particular endpoint that exceeds the effect of a certain
magnitude x. Only the human epidemiological and ToxCast in vitro
studies were included in the present population-based risk analysis; the
animal experimental studies were excluded from this analysis to avoid
extra uncertainty in the extrapolation from animals to humans.

3. Results

3.1. Hazard identification

In this study, we collected dose-response datasets in human epide-
miological studies, animal in vivo toxicity studies and ToxCast in vitro
assays for a comprehensive evaluation. Four human epidemiological
studies with different populations were selected, including the C8
Health Project participants (Steenland et al., 2009), U.S. NHANES
(National Health and Nutrition Examination Survey) participants
(Nelson et al., 2010), Danish population (Eriksen et al., 2013), and Inuit
population (Château-Degat et al., 2010). These studies reported the
association between PFOS exposure and increased serum cholesterol in
humans. In animals, six studies that showed increased liver weight by
PFOS exposure in mice, rats, and monkeys were included in the dose-
response analysis. In addition, the ToxCast in vitro assays related to
PPAR activation, neurotoxicity, immunotoxicity, endocrine disruptors
and cellular responses (including cytotoxicity, mitochondria, oxidative
stress, DNA binding and cell cycle) were included in the in vitro dose-
response model. The characteristics of these datasets were summarized
in Tables 1 and 2. Additional description about these studies is available
in the Supplementary Materials.

3.2. Dose-response modeling results

3.2.1. Model parameters estimation
As listed in Tables 1 and 2, in total 34 datasets were included in the

Bayesian dose-response analyses. The well-mixed Markov chains trace
and probabilistic density plots (Figs. S2 and S3) for the population
mean (µa) and standard deviation ( a) of informative parameter “a”
showed well convergences in all simulations (Scale Reduction Factors
(R ) 1.05 for all simulations). The posterior distributions of the
median with 95% CI for the estimated model parameters (a, b, c) at the
population level are shown in Table S3.

3.2.2. Model evaluation and EC10 determination
The dose-response simulation results of these datasets are presented

in Fig. 2. Most of the dose-response models fitted data points very well,
with RAE of < 1 and Adj. R2 of > 0.7 (Fig. 2). Two out of the 34 da-
tasets (“Animal_1” and ToxCast_13”) did not fit well, with the RAE
of > 1 or the Adj. R2 of < 0.5. Density plots of the distribution of the
concentration or dose that caused 10% increase of the response over the
control group (EC10) for each of the datasets are provided in Fig. 3. The
median of EC10 of serum PFOS concentrations ranged from 0.19 to

7.13 ng/mL in human studies, 0.13 to 2.70 mg/kg/day in animal stu-
dies, and 1.62 to 109 µM in ToxCast in vitro studies (Table 3).

3.3. Determination of human equivalent dose (HED)

Table 3 showed the results of the estimated HEDs associated with
calculated EC10 values across human epidemiological studies, animal in
vivo studies and ToxCast in vitro assays. Using the previously developed
multi-specie PBPK model (Chou and Lin, 2019), the ASC (ASChuman) and
steady-state concentration (Css) in humans were determined to be
94,113 ng/mL and 13,571 µM on the basis of a daily oral intake of
1 mg/kg/day for 50 years (Table S1). The dose metric of Css was used to
calculate HEDs from in vitro assays, while the dose metric of ALC and
ASC were used to calculate HEDs from animal and human studies, re-
spectively. The estimated ALC values in monkeys, rats, and mice were
789,135, 172,059 and 462,833 ng/mL, respectively (Table S1). By the
incorporating the ASC, ALC, and EC10 values into Eqs. (5) and (6), the
associated HEDs were derived (Table 3).

3.4. HED variability across studies and threshold dose (TD) estimation

Inter-study variability in HEDs was visualized using boxplots across
human, animal and ToxCast in vitro studies shown in Fig. 4. Overall, the
median of HEDs was 1.78 µg/kg/day (1.78 * 10−3 mg/kg/day) with
95% CI of 0.004–36.3 µg/kg/day, spanning over 5 orders of magnitude.
The median of HEDs based animal and ToxCast in vitro studies were
relatively similar (within 2 orders of magnitude difference), with a
range of 1.41–54.3 and a 95% CI of 1.85–48.6 µg/kg/day in animal
studies, as well as a range of 0.04–12.5 and a 95% CI of 0.11–8.55 µg/
kg/day in ToxCast in vitro studies. On the other hand, the HEDs derived
from human studies were generally lower than other studies, with a
range of 0.0004–0.12 and a 95% CI of 0.0007–0.10 µg/kg/day
(Fig. 4A).

To derive the TD values, the HEDs values across different endpoints
in human, animal and ToxCast in vitro studies were fitted with Weibull
distribution to construct the cumulative distribution function (CDF)
with 95% confidence interval. The 5th percentile of HEDs (i.e. TD) with
the corresponding 95% CI were determined as 21.5 (10.6–36.3) ng/kg/
day (Fig. 4B). The lower bound of TD (10.6 ng/kg/day) was determined
to be a conservative threshold dose which can be the basis in the de-
termination of health-protective exposure limits.

3.5. Population-based risk characterization

The exceedance probability (% of population having equal to or
greater than certain incremental changes of adverse effects) versus
magnitude of percentage incremental changes of adverse effects for
human serum cholesterol and in vitro studies associated with endpoints
on PPAR, neurotoxicity, immunotoxicity, endocrine disruptors and
cellular response is shown in Fig. 5 and Table 4. By linking the reported
serum PFOS concentrations in the Asian, Australian, European and
North American general populations, respectively (Table S2) with the
constructed population dose-response models, the exceedance prob-
abilities of different human populations due to PFOS exposure for dif-
ferent endpoints were estimated. The results showed that the incre-
mental changes for different endpoints in the North American
populations appeared to be slightly higher than Asian, Australian and
European populations (Table 4). Fifty percentage of the North Amer-
ican population (EP = 0.5) had the incremental changes of 25.8% (95%
CI: 14.4–36.4%) in increased serum cholesterol, 19.5% (95% CI:
18.0–23.4%) in PPAR activation, 7.92% (95% CI: 7.62–8.58%) in
neurotoxicity, 9.17% (95%CI: 8.23–12.2%) in immunotoxicity, 10.7%
(95% CI: 8.81–16.0%) in endocrine disruption, and 11.3% (95% CI:
10.1–14.5%) in cellular response (Fig. 5D1-D6, Table 4). None to
minimal effects (< 20% critical effects) of neurotoxicity, im-
munotoxicity, endocrine disruption, and cellular response for 50% of
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human populations in all countries after exposure to the general en-
vironmental levels. It is also worth mentioning that high upper-bound
effects of endocrine disruption (ER) and cellular response (CR) were
estimated at the 10% of population (EP = 0.1) (i.e., sensitive popula-
tion) in Asia (ER: 396% and CR: 497%), Australia (ER: 287% and CR:
311%), Europe (ER: 348% and CR: 433%) and North America (ER:
402% and CR: 502%) (Table 4). These significant increases might be
because the general environmental exposure dose exceeds the threshold
value that activates the relevant molecular initiating events.

4. Discussion

A major contribution of this study is the development of a prob-
abilistic risk assessment framework that can integrate different types of
toxicity studies with PBPK modeling to enhance the reliability in the
determination of PODs and further improve risk assessment for PFOS.
The Bayesian dose-response model can quantify the uncertainty and
variability to derive the probabilistic POD based on a variety of toxicity
datasets, including human epidemiology studies, animal in vivo studies,
and ToxCast in vitro assays. Using the previously developed multi-spe-
cies PBPK model can improve the toxicokinetic variability between
species and convert the derived PODs into HEDs as the basis in the
determination of RfDs for PFOS. As a demonstration, the present study
framework was successfully applied to comprehensively estimate the
population-based risk based on reported PFOS environmental exposure
levels in the human general populations from different areas of the
world to serve as a foundation for supporting better-informed risk
management decisions of PFOS. This probabilistic framework can be

extrapolated to other PFAS compounds to help regulatory agencies
address risk assessment issues of this important family of environmental
contaminants.

4.1. Comparison of PODs derived from in vivo and in vitro studies

Comprehensive dose-response evaluation integrating human epi-
demiological studies, animal experimental in vivo studies, and ToxCast
in vitro assays provides important insights into PFOS-induced toxicity
from molecular events to clinical phenotypes. Our results suggest that
the ToxCast in vitro assays related to neurotoxicity and immunotoxicity
are the most sensitive endpoints across the 24 selected in vitro assays
(Fig. 4). When we compare the in vitro results with in vivo studies, we
found that the derived PODs are consistent between in vitro and in vivo
studies. The POD ranges derived from in vitro assays in the molecular
events of PPAR activation, immunotoxicity, and cellular responses
(oxidative stress and mitochondrial response) are similar to the values
based on the endpoint of increased liver weight in rodent studies. This
implies that there are plausible PFOS biological activity and hepatic
toxicity at the similar dose ranges. Interestingly, our results are con-
sistent with a previous study that showed transcriptional perturbation
can occur at similar doses with apical responses in in vivo studies
(Thomas et al., 2013).

4.2. Possible mode of action (MOA) of PFOS toxicity

The MOA of PFOS-induced hepatic toxicity in humans is not fully
understood, but a growing number of studies in animals have been

Fig. 2. Bayesian dose-response fitting results. The result for each of the 34 studies from human, animal, and ToxCast in vitro studies is shown as a separate panel. Dots
represent the measured data points. Solid black line represents the population average (i.e., the median value) and pink lines represent individual simulated dose-
response curves for the 5000 iterations. Adj.R: adjusted R square, RAE: relative absolute error. X axis represents the natural log-transformed (Ln) dose or con-
centration (Ln scale of µM or ng/ml or mg/kg/day).
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trying to investigate MOA of PFOS. The leading hypothesis is that PFOS
may interfere with mitochondrial beta-oxidation of fatty acids and
subsequently affect the transcriptional activity of peroxisome pro-
liferator-activated receptor alpha in liver, resulting in liver growth,
proliferation of peroxisomes and induction of peroxisome beta-oxida-
tion in rodents (Martin et al., 2007; Wan et al., 2012; Wang et al.,
2015). Yet, in the present study, we found large differences in the range
of POD values based on increased serum cholesterol observed in human
studies compared with the ranges based on in vivo and in vitro studies.
The mechanisms of PFOS-induced changes in plasma cholesterol levels
in humans are unknown, but this effect is opposite to the observed ef-
fect in the rodent studies (Martin et al., 2007; Thibodeaux et al., 2003).
Based on animal studies, PFOS has been suggested as a strong ligand of
PPAR alpha and this binding can alter lipid metabolism to change
serum lipid (Kennedy et al., 2004). On the other hand, PFOS and its
related compounds have been shown to respond much less to PPAR
alpha and its isoform in certain human cell lines than in rodents
(Palmer et al., 1998; Takacs and Abbott, 2007). The differential re-
sponse to PPAR alpha between species may partly explain the incon-
sistent ranges of derived-PODs between animal and human studies. Our
results also suggest that the range of PODs based on elevated serum
cholesterol in human studies is much lower than the POD range derived
from ToxCast assays of PPAR activation. These results indicate that
PPAR-independent mechanisms could be involved in PFOS-induced
toxicity as well, leading to altered lipid metabolism at lower con-
centrations/doses.

4.3. Model-wise comparisons with BMDS and BBMD

The benchmark dose (BMD) method has been widely used to esti-
mate the POD in the dose-response analysis for human health risk as-
sessment. The BMD software (BMDS) developed by U.S. EPA has been
accepted as a preferred tool for BMD estimation and used by risk as-
sessors and scientists all over the world. More recently, a powerful web-
based interface implementing Bayesian approach in BMD analysis
(BBMD) was developed by Shao and Shapiro (2018). This tool allows
users to estimate the probabilistic BMD and increases the reliability of
dose-response analyses by incorporating the prior information. To
better understand the results from the present Bayesian dose-response
modeling, we compared the derived EC10 values from this study with
the outputs from the BMDS and BBMD (Table S4, please refer to the
Supplementary Materials for detailed methods). All the results of POD
estimations from different tools based on the same datasets (34 studies
in Tables 1 and 2) are summarized in Table S4. The ranges of median
PODs for human studies were estimated to be 0.19–7.13, 0.27–5.96,
and 6.13–19.8 ng/mL using the present approach, BMDS, and BBMD,
respectively. For animal studies, the ranges of median PODs were es-
timated to be 0.13–2.70 (this study), 0.11–2.14 (BMDS), and 0.31–2.57
(BBMD) mg/kg/day. In the ToxCast in vitro studies, the ranges were
3.81–109, 0.96–94.23, and 0.69–74.5 µM based on the estimation from
this study, BMDS, and BBMD, respectively. Despite of the differences of
the methodology between our method and the BMD/BBMD tools, the
similar ranges of derived PODs demonstrate the validity of the esti-
mation of PODs of this study.

Fig. 3. Histogram plot of the natural log-transformed (Ln) EC10 values (Ln scale of µM or ng/ml or mg/kg/day) derived from the Bayesian dose-response analyses for
the selected 34 datasets. The result of each dataset is shown as an individual panel.
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4.4. Model application for the derivation of RfD

Recently, the expert panels of National Research Council (NRC)
(NRC, 2009) and World Health Organization International Program on
Chemical Safety (WHO/IPCS) (WHO, 2017) proposed a probabilistic
approach for dose-response analysis to unify across various endpoints
from multiple sources. A probabilistic risk assessment approach in-
tegrating diverse datasets from different sources, species and endpoints
may reduce some inherent uncertainty and limitations between and
within studies/experiments. In line with the NRC and the WHO/IPCS
guidelines, the major application of our developed probabilistic risk
assessment framework is to determine the probabilistic POD values via
a Bayesian dose-response model that accounts for the variability of data
from different studies and species; and the resulting POD values can be
converted into HEDs by using a well-validated multi-species PBPK
model, which further reduces the interspecies uncertainty. Integrating
the estimated HEDs derived from different PODs across human, in vivo
and in vitro studies, the median of TD values with 95% CI was

determined to be 21.5 (95% CI: 10.6–36.3) ng/kg/day. Using the esti-
mated lower-bound TD values (10.6 ng/kg/day) and the uncertainty
factor of 10 (only consider a factor of 10 to account for the intra-species
variability because the interspecies variability of pharmacokinetics and
pharmacodynamics has been considered in the PBPK model and Baye-
sian dose-response model, respectively), the estimated RfD value was
1.1 ng/kg/day. This RfD value is lower than the currently re-
commended value by U.S. EPA (20 ng/kg/day) (U.S. EPA, 2016), but it
is close to the guidance values from EFSA (1.8 ng/kg/day) (EFSA, 2018)
and German Federal Environment Agency (UBA) (0.4 ng/kg/day)
(UBA, 2016). Overall, the estimated RfD based on the present study is
within the range of RfDs recommended by different regulatory agencies
(0.4–20 ng/kg/day). The differences in the RfDs between our study and
the guidance values from different regulatory agencies are mainly due
to different studies selected as the PODs to derived RfD. Since this study
uses a unified probabilistic framework to integrate various types of
toxicity data, the variability of PODs can be comprehensively char-
acterized to improve the reliability in the determination of PODs.
Moreover, the derived HED is lower than the HED estimated from our
previously study (Chou and Lin, 2019) (e.g., 0.01 vs. 0.2 μg/kg/day).
The difference is mainly because the present study framework in-
corporating the Bayesian dose-response model coupled with PBPK
modeling can further reduce the toxicodynamic/toxicokinetic un-
certainty in the derivation of HED. Thus, less uncertainty needs to be
considered when deriving the RfD. Overall, this robust new approach
can help support risk assessment of PFOS and its related compounds.

4.5. Population-based risk characterization

Compared with traditional risk assessment approach, probabilistic
risk assessment can quantify a population-based risk estimation based
on predicted chemical-induced toxicity effects and the uncertainty and
variability of these effects. The NRC guideline on risk assessment has an
emphasis on the population-based risk (NRC, 2009). Likewise, the
WHO/IPCS guideline (WHO, 2017) emphasizes several essential ele-
ments on population risk assessment, especially the risk estimate as-
sociated with the population incidence of a specific magnitude of effect
along with the derived confidence interval, which can replace the tra-
ditional risk characterization. Since the present dose-response analysis
is based on a Bayesian approach, this probabilistic framework can be
used to quantify the risk estimation in a population. Based on the WHO/
IPCS guideline (WHO, 2017), our study characterizes the risk with two
essential elements. First, the concept of harmful effects is quantified as
a specific magnitude of effects with regard to the degree of harm (e.g.,
percentile). Second, the population dose-response model via Bayesian
analysis allows us to estimate the probability or fraction of population
which have the magnitude of effects or greater. By linking the reported
serum PFOS concentration in the human general population from dif-
ferent areas of the world (Table S2) and the population dose-response
model based on the endpoints of increased serum cholesterol, PPAR
activation, neurotoxicity, immunotoxicity, endocrine disruption, and
cellular response, a comprehensive population-based risk estimation for
each endpoint was conducted in this study (Table 4). Based on the
serum PFOS concentrations (Table S2) ranging from 0.05 to 214 ng/mL
in the Asian population, 5 to 29.5 ng/mL in the Australian population,
0.06 to 92.5 ng/mL in the European population, and 0.4 to 1656 ng/mL
in the North American general population, 50% of the population
(EP = 0.5) has more than 10% incremental changes of increased serum
cholesterol, PPAR activation, endocrine disruptions and cellular re-
sponse due to environmental PFOS exposure. These results indicate that
almost half of the general population may have at least 10% risk of
these endpoints given the current environmental exposure levels (i.e.,
0.04–1656 ng/mL plasma PFOS levels). This is not unexpected because
numerous human epidemiological studies have reported the potential
association between PFOS exposure and increased serum lipid levels in
the human population, especially for PFOS-contaminated areas (Frisbee

Table 3
Human equivalent doses (HEDs) for PFOS associated with EC10 derived from
human epidemiological studies, animal in vivo studies, and ToxCast in vitro
assays.

Reference or ToxCast assay EC10a (ng/mL or
mg/kg/day or µM)

HEDb (µg/kg/day)

Human epidemiological studies
Steenland et al. (2009) 2.28 (1.05–4.12) 0.02 (0.01–0.04)
Eriksen et al. (2013) 0.19 (0.031–0.66) 0.002

(0.0004–0.006)
Nelson et al. (2010) 1.85 (0.75–3.60) 0.019

(0.008–0.037)
Château-Degat et al. (2010) 7.13 (4.06–11.04) 0.07 (0.045–0.12)

Animal in vivo studies
Seacat et al. (2002) 0.55 (0.32–1.01) 30.3 (17.4–54.3)
Seacat et al. (2003) 0.20 (0.12–0.31) 2.39 (1.41–3.75)
Curran et al. (2008) 2.70 (1.66–4.60) 32.3 (19.7–54.1)
Dong et al.(2009) 0.22 (0.13–0.33) 7.07 (4.44–10.9)
Dong et al. (2011) 0.13 (0.07–0.22) 4.32 (2.21–7.29)
Lefebvre et al. (2008) 2.67 (1.66–4.48) 31.9 (19.6–53.5)

ToxCast in vitro assays
ATG_PPRE_CIS_up 38.1 (24.9–44.8) 2.81 (1.84–3.30)
ATG_PPARg_TRANS_up 105 (67.6–125) 7.80 (5.03–9.27)
NVS_GPCR_h5HT5A 16.8 (11.2–25.3) 1.24 (0.82–1.88)
NVS_GPCR_h5HT6 3.81 (0.86–10.8) 0.28 (0.06–0.80)
NVS_GPCR_h5HT7 11.6 (3.35–23.8) 0.87 (0.26–1.76)
NVS_GPCR_hAdoRA2a 4.04 (1.29–8.78) 0.29 (0.09–0.66)
NVS_GPCR_hAdra2C 1.62 (0.48–3.96) 0.12 (0.04–0.29)
NVS_GPCR_hAdrb1 6.03 (1.75–13.5) 0.44 (0.13–0.98)
BSK_SAg_CD40_down 9.78 (2.43–20.8) 0.72 (0.18–1.52)
BSK_BE3C_IP10_down 24.4 (21.1–30.1) 1.79 (1.55–2.19)
BSK_BE3C_IL1a_down 5.67 (4.77–6.99) 0.42 (0.35–0.52)
BSK_LPS_IL8_up 9.56 (7.91–14.9) 0.70 (0.58–1.13)
BSK_3C_uPAR_down 31.3 (25.4–147.6) 2.29 (1.87–3.89)
BSK_CASM3C_VCAM1_down 23.2 (20.1–28.7) 1.71 (1.48–2.11)
NVS_NR_hAR 30.1 (24.9–54.8) 2.22 (1.83–3.33)
OT_ER_ERaERb_0480 7.76 (4.97–12.7) 0.57 (0.36–0.95)
ATG_ERa_TRANS_up 21.1 (14.7–30.8) 1.55 (1.07–2.27)
ATG_ERE_CIS_up 13.4 (9.6–20.0) 9.85 (0.71–1.48)
NVS_NR_hTRa_Antagonist 67.3 (39.3–168) 4.97 (2.93–12.5)
APR_HepG2_CellLoss_24h_dn 78.1 (67.8–90.1) 5.74 (5.00–6.66)
APR_HepG2_MitoMass_24h_dn 109 (94.9–129) 8.07 (6.97–9.54)
APR_HepG2_OxidativeStress_24h_up 61.7 (52.5–73.4) 4.53 (3.86–5.39)
APR_HepG2_p53Act_24h_up 50.2 (40.3–55.4) 3.48 (2.97–4.06)
APR_HepG2_MitoticArrest_24h_up 89.1 (77.6–102.2) 6.57 (5.72–7.57)

a The values represent median and 95% confidence interval (CI, i.e., 2.5th-
97.5th percentiles) of EC10 (i.e., effective concentration resulting in 10% of
changes); The unit of EC10 is ng/mL, mg/kg/day, µM in human, animal and
ToxCast in vitro studies, respectively.

b The values represent median and 95% confidence interval (CI, i.e., 2.5th-
97.5th percentiles) of HEDs (i.e., human equivalent doses) deriving from the
corresponding EC10 values.
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et al., 2010; Steenland et al., 2009). Furthermore, PFOS-induced acti-
vation of PPAR and estrogen signaling pathway might subsequently
trigger several cellular responses such as oxidative stress, cell pro-
liferation and inflammation, etc., which supports our findings
(Devchand et al., 1996; Jiang et al., 1998). In the risk estimation of the
sensitive subpopulation, our results indicate that around 10% of the
human population (EP = 0.1) has high incremental effects of endocrine
disruption and cellular response. The results indicate that a certain
fraction of the human population exposed to PFOS levels exceeding the
threshold value that activates estrogen signaling pathway and sub-
sequent cellular response. Overall, our results provide a probabilistic
approach to characterize the possible risk estimates for different end-
points in the human population, and our results can support better-
informed risk decisions.

4.6. Limitations

There are several limitations in this study. First, this study did not
include all possible toxicity endpoints for PFOS in the dose-response
analysis, thus, only the 34 critical datasets (including human epide-
miological, animal in vivo, and ToxCast in vitro toxicity datasets) iden-
tified based on EFSA and U.S. EPA reports (EFSA, 2018; U.S. EPA, 2016)
were considered in this study. Since hazard identification is a critical
step of risk assessment, a systematic review and meta-analysis for PFOS
toxicity is needed in the future to provide a more comprehensive risk
assessment.

Second, the consideration of human epidemiological studies in the
dose-response analysis has limitations on the assessing causality and co-
exposure issues. The majority of human studies showing the association
between PFOS or PFOA exposure and increase of serum lipid are cross-
sectional studies, thus the results might not prove the causality. Yet,
according to the EFSA report (EFSA, 2018), 26 epidemiological studies
(including 16 cohorts) report the association between serum PFOS or

PFOA and serum lipids based on all available human studies, and 16
studies in general populations show significant positive associations
between PFOS and/or PFOA and total serum cholesterol. For PFOS,
only one of these studies shows clear null results (Lin et al., 2011).
Based on these human studies, EFSA concludes that it’s likely there is a
causal association between PFOS and increase of serum cholesterol
(EFSA, 2018). Additionally, co-exposure confounding is common in
epidemiological studies and it’s difficult to disentangle the effect of
PFOS from PFOA or other PFAS compounds. However, based on the
current EFSA’s report (EFSA, 2018), the EFSA expert panel recognizes
this limitation and concludes: “It is likely that adjustment for PFOA
(and maybe other PFASs) would result in somewhat higher BMDL5
values and corresponding daily intake rates”. Accordingly, our esti-
mated EC10 and HED might be more conservative than the values by
the adjustment of the effects from other PFAS compounds.

Third, the incorporation of ToxCast in vitro datasets in the dose-
response analysis has a variety of inherent limitations and faces mul-
tiple challenges. For IVIVE, the underlying hypothesis is that the
average plasma concentration or steady-state plasma concentration
equivalent to or higher than in vitro POD would produce responses in
vivo (Rotroff et al., 2010; Wetmore et al., 2015, 2012). However, it is
known that perturbations of biological pathways in vitro do not ne-
cessarily result in adverse effects in vivo (Krewski et al., 2019). Also, this
assumption implies that the in vitro system has equal or similar ex-
posure duration or biological time scale to the in vivo studies despite the
fact that in vitro assays are often short-term duration (e.g., hours or
days) as opposed to the exposure duration in animals and humans (e.g.,
months or years). In addition, the nominal concentrations in the in vitro
systems are typically used in the toxicity testing via the IVIVE approach
based on the ToxCast data (Wetmore et al., 2015, 2013, 2012). How-
ever, the effective free chemical concentration (i.e., unbound con-
centration) in the in vitro assays that triggers a response might differ
from the nominal concentration because of factors such as the

Fig. 4. Estimation of points of departure (PODs). (A) Comparison of PODs derived from human epidemiological, animal in vivo, and ToxCast in vitro studies; (B)
Cumulative fitted Weibull distribution of PODs derived from human, animal in vivo, and ToxCast in vitro studies. In Fig. 4A, a total of 34 studies with specific
endpoints are displayed as a box-and-whisker plot in the order from the lowest to the highest median dose. The vertical line depicts the median; the lower and upper
edges of the box represent the 25th and 75th percentiles; and the whiskers represent the range of values 1.5 times the interquartile range below or above the 25th and
75th percentiles, respectively. In Fig. 4B, the solid line represents the median and the dash lines indicate the 95% CI. The horizontal line represents the range between
highest and lowest POD values. Abbreviations: LW: liver weight; PPAR: PPAR activation; CelluarRes: Cellular response; Endocrine: endocrine disruption; ImmunoTox:
Immunotoxicity; NeuroTox: neurotoxicity; SC: serum cholesterol.
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composition of the cell media and binding of the chemicals to plastic
well or ingredients (Blaauboer, 2010). The above-mentioned challenges
might lead to uncertainty in our in vitro POD estimation and need to be
addressed in the future. In addition, the cellular response in the in vitro
systems might be very different from the response of cells in vivo which
can experience dynamic or relatively constant chemical concentrations
depending on the real-world exposure scenarios and physiological
clearance rates. Thus, it is difficult to directly link in vitro activity to
adverse outcomes/disease endpoints and there is an inherent limitation
to correlate the bioactivity in in vitro systems with the response or
biomarkers in vivo. These limitations and challenges related to the use
of in vitro assays in risk assessment are further discussed in the recent
report on the vision, progress, and challenges of the Toxicity Testing in
the 21st Century (Tox21) program (Krewski et al., 2019).

To better link in vitro assays to in vivo toxicity and risk assessment,
computational models that can mechanistically describe chemical tox-
icokinetics and toxicodynamics and can correlate in vitro activity with in
vivo toxicity are needed. For example, several PBPK models have been
expanded to include a toxicodynamic component to become biologi-
cally based dose-response (BBDR) models to interpret dose-response
data at the cellular and molecular levels based on the biological basis
and to link external exposure with an adverse effect. Examples include

the carcinogenic effects of formaldehyde (Conolly et al., 2004, 2003)
and an evaluation of a hypothesized MOA for the disruption of hy-
pothalamic–pituitary–thyroid axis homeostasis by perchlorate
(McLanahan et al., 2009). BBDR models can provide a probabilistic
prediction of an adverse outcome in humans by a function of quanti-
tative biological events (e.g., production rates of hormones, cell divi-
sion rates) involved in the response. A PBPK model can provide a
linkage to express the exposure in the target organ as a function of
external response. Thus, further studies are needed to develop BBDR
models that will provide a useful framework for integrating available
dose-response data from in vitro and in vivo studies, evaluating the
possible MOA from molecular levels to adverse outcomes for PFOS and
other PFAS compounds.

Fourth, this study was not designed to compare different dose-re-
sponse models, thus, only the Hill dose-response model was considered
in this study. This was because the Hill model can directly parameterize
the efficacy and potency with the Emax (maximal response) and EC50
(concentration at the half maximal response), it is frequently used in
estimating monotonic dose-response curves and recommended by EFSA
and U.S. EPA for benchmark dose estimation (EFSA, 2017; U.S. EPA,
2012). Also, the log-form Hill model has been successfully implemented
to fit the ToxCast in vitro data (Tice et al., 2013; Watt and Judson,

Fig. 5. Exceedance probability profiles across human and ToxCast in vitro studies for endpoints of (A1, B1, C1, D1) increased serum cholesterol (human), (A2, B2, C2,
D2) PPAR activation (in vitro), (A3, B3, C3, D3) neurotoxicity (in vitro), (A4, B4, C4, D4) immunotoxicity, (A5, B5, C5, D5) endocrine disruption, and (A6, B6, C6, D6)
cellular response in Asian (A1-A6), Australian (B1-B6), European (C1-C6) and North American populations (D1-D6). Solid pink bold curve in each panel represents
the population average curve; and the solid light curves in each panel represent individual simulated risk curves for 1000 iterations. Red vertical dashed line
represents the exceedance probability (EP) of 10% (EP = 0.1) and black vertical dashed line represents the EP of 50% (EP = 0.5). Abbreviations: SC: serum
cholesterol; PPAR: PPAR activation; NeuroTox: neurotoxicity; ImmunoTox: Immunotoxicity; Endocrine: endocrine disruption; CellularRes: Cellular response.
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2018). It is recognized that sometimes the Hill model may not the best
dose-response model to describe dose-response data. In this study, the
Hill model and its log-transformed equation failed to fit two out of the
34 datasets (i.e., adjusted R square lower than 0.5). The results from
these two datasets may cause some uncertainty in the identification of
POD values. Additional studies might be needed to explore different
models (e.g., linear, exponential, and logistic models).

Fifth, the magnitude of effects in the dose-response analysis was
standardized to incremental change compared to the control group
without further considering the differential severities of different end-
points. For instance, 10% incremental change of the in vitro toxicity
endpoints (e.g., gene expression or cellular response) has a different
severity compared with that of in vivo endpoints (e.g., increased liver
weight) and human endpoints (e.g., increased serum cholesterol). The
variation in the severity of different endpoints might also impact risk
estimation and decision. However, the differences in the severity of
different endpoints can be accommodated by specifying different levels
based on MOAs or adverse outcome pathways to provide a more
complete risk characterization (Cote et al., 2016), which warrants
further studies. In addition, some specific in vitro responses (e.g., es-
trogen signaling pathway) are sex-dependent. Future studies are needed
to refine this approach further by evaluating sex-specific differences on
the predicted outcomes. Also, this study does not include the re-
productive/developmental toxicity as the endpoint for the dose-re-
sponse analysis because our PBPK model is in adults. However, the
developmental effects for the fetus, neonate, and infant are considered
to be the most sensitive toxicity endpoints for PFOS (U.S. EPA, 2016).
Future studies are needed to extend the present PBPK model from the
adulthood to other life stages, particularly in gestational and lactational
periods. Finally, the present study uses a subchronic-to-chronic un-
certainty factor of 1-fold due to lack of chronic study data that are
suitable for dose-response analysis of the selected endpoint of increased
liver weight. Although this uncertainty factor has been used by other
regulatory agencies and is well justified in the recent U.S. EPA report
(Dong et al., 2017; U.S. EPA, 2016), this remains one uncertainty of this
study and should be addressed when relevant chronic study data are
available in the future.

5. Conclusions

In this study, we developed and applied a probabilistic risk assess-
ment approach to improve the derivation of RfDs and to further inform
risk assessment in the human population using PFOS as a case study.
Our results suggested that the model-derived in vitro PODs are similar to
the POD values derived from animal in vivo studies, but they are quite
different from the PODs derived from human studies. The estimated
RfDs from this study is lower than the guidance value recommended by
U.S. EPA, but it is close to the guidance values suggested by EFSA and
UBA. In addition, there may be 50% of population in all studied
countries having more than 10% incremental changes of evaluated
serum cholesterol and PPAR activation based on reported serum PFOS
levels in the different areas of the world. Moreover, there may be a
small percentage (10%) of the general population that may be highly
sensitive to PFOS toxicity. Overall, our results provide insights into risk
assessment of PFOS and the present probabilistic risk assessment fra-
mework can be used for other PFAS compounds to facilitate the risk
decisions of this important family of environmental contaminants.
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Table 4
Exceedance probability (median with 95% CI) of PFOS-induced adverse effects based on human and ToxCast studies in Asian, Australian, European and North
American population.

Exceedancea probability (EP) Critical effectsb (% of incremental changes)

Increased SC PPAR NeuroTox ImmunoTox ER CR

Asia
EP = 0.1 38.8 (26.3–48.9) 59.2 (48.1–548) 19.5 (18.9–20.7) 28.5 (21.6–574) 243 (31.8–396) 168 (28.7–497)
EP = 0.5 22.9 (12.9–33.6) 19.1 (17.9–22.1) 7.88 (7.58–8.31) 8.94 (8.15–11.3) 10.2 (8.67–14.1) 11.0 (9.98–13.6)
EP = 0.9 10.8 (4.80–19.5) 3.49 (3.14–3.97) 1.46 (1.33–1.61) 1.63 (1.45–1.96) 1.83 (1.54–2.36) 2.01 (1.78–2.37)

Australia
EP = 0.1 33.8 (28.1–40.6) 52.4 (48.5–62.9) 19.4 (18.9–19.9) 23.9 (21.6–30.8) 109 (35.4–287) 36.2 (20.1–311)
EP = 0.5 18.5 (14.2–24.6) 18.5 (17.8–19.6) 7.82 (7.56–8.01) 8.54 (8.12–9.12) 9.44 (8.79–10.6) 10.5 (9.94–11.4)
EP = 0.9 7.88 (5.41–11.9) 3.41 (3.12–3.72) 1.45 (1.33–1.59) 1.58 (1.43–1.73) 1.71 (1.54–1.92) 1.93 (1.75–2.15)

Europe
EP = 0.1 30.6 (18.8–42.2) 50.3 (45.9–77.3) 19.4 (18.8–19.9) 22.6 (20.4–48.8) 59.6 (24.5–348) 31.3 (25.8–433)
EP = 0.5 16.0 (8.31–26.3) 18.4 (17.5–19.9) 7.82 (7.56–8.07) 8.39 (7.96–9.34) 9.12 (8.27–11.3) 10.3 (9.65–11.7)
EP = 0.9 6.42 (2.50–13.3) 3.38 (3.09–3.72) 1.45 (1.33–1.58) 1.55 (1.40–1.74) 1.66 (1.46–2.00) 1.89 (1.72–2.13)

North America
EP = 0.1 41.7 (28.4–51.3) 65.1 (49.2–564) 19.7 (18.9–21.9) 33.6 (21.8–616) 305 (35.3–402) 330 (29.5–502)
EP = 0.5 25.8 (14.4–36.4) 19.5 (18.0–23.4) 7.92 (7.62–8.58) 9.17 (8.23–12.2) 10.7 (8.81–16.0) 11.3 (10.1–14.5)
EP = 0.9 12.9 (5.45–22.1) 3.56 (3.18–4.18) 1.48 (1.35–1.65) 1.68 (1.47–2.09) 1.91 (1.57–2.57) 2.05 (1.79–2.54)

a Exceedance probability (EP) indicate the percentage of population with effects equal to or greater than the magnitude of the critical effects (e.g., EP = 0.1/0.5/
0.9 represent the 10/50/90% of population with certain effects equal to or greater than the magnitude of critical effects).

b The critical effects indicate the percentage of incremental changes that calculated from human and in ToxCast in vitro studies based on the endpoints of increased
serum cholesterol (SC), PPAR pathways activation (PPAR), neurotoxicity (NeuroTox), Immunotoxicity (ImmunoTox), endocrine disruption (ER) and cellular response
(CR).
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