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1. Dose-response data sets 

In this study, we collected dose-response data sets from human epidemiological studies, animal in 

vivo toxicity studies and ToxCast in vitro assays for a comprehensive dose-response evaluation. 

The datasets consisted of 34 studies and 7 endpoints: increased serum cholesterol, increased liver 

weight, PPAR activation, neurotoxicity, immunotoxicity, endocrine disruption and cellular 

responses (including cytotoxicity, mitochondria, oxidative stress, DNA binding and cell cycle). 

The datasets are listed in Table 1 and Table 2 of the manuscript. 

1.1 Human epidemiological studies 

1.1.1 Mode of action (MOA) considerations for human studies 

According to the comprehensive literature review by EFSA (EFSA, 2018), numerous human 

studies have investigated potential association between PFOS or PFOA exposure and serum 

cholesterol levels. Most of them show significant positive associations between PFOS and/or 

PFOA and total cholesterol (Eriksen et al., 2013; Fitz-Simon et al., 2013; Frisbee et al., 2010; 

Geiger et al., 2014; Skuladottir et al., 2015; Starling et al., 2014; Steenland et al., 2009; Yu et al., 

2005). For PFOS, only one of these studies shows clear null results (Lin et al., 2011). Based on 

these human studies, EFSA concludes that it’s likely there is a causal association between PFOS 

and increase of serum cholesterol. However, the exact mechanism of how PFOS increases human 

serum cholesterol levels remains unclear. Based on the latest EPA report (U.S. EPA, 2016), the 

possible MOA is that high-density lipoproteins (HDLs) bind cholesterol from other serum 

lipoprotein complexes and transport it to the liver for degradation and conversion to bile salts 

(Montgomery et al. 1990). Competition between PFOS and bile salts for biliary transport could 

result in impeded removal of HDL lipids from serum and increase both HDL cholesterol and total 

cholesterol. In addition, HDLs have the highest ratio of proteins to lipids (50:50) among the serum 
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lipoprotein complexes (Montgomery et al. 1990). Binding of PFOS to HDL protein could impede 

the HDL interaction with liver tissue receptors resulting in increased serum levels of HDL. 

However, the inverse association between cholesterol and serum PFOS concentration was 

observed in rodents (Elcombe et al., 2012; Minata et al., 2010; Wang et al., 2013). The differences 

of susceptibility between primates and rodents on the activation of PPARa might be one of reasons 

to account for this species-specific effect. Additional studies are needed to elucidate the 

mechanisms of how PFOS changes serum cholesterol concentrations in different species. 

1.1.2 Selected critical human epidemiological studies 

Numerous epidemiologic studies have evaluated the potential association between serum lipid 

status and plasma PFOS concentrations, and they have reported a significant association between 

PFOS exposure and the increase in total serum cholesterol level in the general population (Table 

1). Four cohort studies were included in our dose-response analyses with different human 

populations, including the U.S. NHANES (National Health and Nutrition Examination Survey) 

volunteers (Nelson et al., 2010), the U.S. C8 Health Project participants (Steenland et al. 2009), 

Danish population (Eriksen et al., 2013), and Inuit population (Château-Degat et al., 2010)  

• U.S. population: Steenland et al. (2009) examined the levels of serum PFOS, PFOA, and 

lipids among 46,294 residents, ≥18 years old, participating in the C8 Health Project. The 

mean serum PFOS levels were determined to be 0.022 µg/mL with a range of 0.00025 – 

0.7592 µg/mL. The lipid outcomes including total cholesterol, HDL cholesterol, LDL 

cholesterol, and triglycerides were determined to investigate the potential association 

between serum PFOA/PFOS levels and the lipid endpoints. In the NHANES study, Nelson 

et al. (2010) used the 2003–2004 data to analyze PFOS and other perfluorinated chemicals 

and lipid outcomes (total cholesterol, HDL, non-HDL lipoproteins, and LDL). 
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Approximately 860 participants (20-80 years old) were included in the analyses with the 

mean PFOS serum concentration of 0.025 µg/mL (range: 0.0014–0.392 µg/mL). A 

significant positive association was identified between total serum cholesterol and serum 

PFOS concentrations.  

• Danish population: In the Danish cohort (n = 753; 663 males and 90 females), Eriksen et 

al. (Eriksen et al., 2013) examined the association between plasma PFOS levels and total 

cholesterol levels in a middle-aged (50-65 years) Danish population. The mean plasma 

PFOS level was 0.0361 µg/mL. A significant positive association was found between 

serum PFOS levels and total serum cholesterol levels. In addition, a 4.6 mg/dL (95% CI: 

0.8–8.5) higher concentration of total cholesterol was found per interquartile range of 

plasma PFOS level. 

• Inuit population: In the Inuit population (n = 723), a cross-sectional epidemiological 

study was conducted to evaluate the effect of PFOS exposure on blood lipids. The mean 

PFOS concentration was 18.6 ng/mL (geometric mean) with 95% CI of 17.8 – 19.5 ng/mL. 

A positive trend was identified between total cholesterol and PFOS exposure, but it was no 

longer statistically significant after an adjustment for confounders. 

1.2. Animal in vivo toxicity studies 

1.2.1 Mode of action (MOA) considerations for animal studies 

Many experimental studies have shown that the liver is the primary target organ for PFOS in 

animals (Fai Tse et al., 2016; Han et al., 2018; Wan et al., 2016). However, the MOA responsible 

for the increase of liver weight due to PFOS exposure is not well understood. Based on the EFSA 

report (EFSA, 2018), one of possible mechanisms of PFOS-induced liver toxicity appears to be 

the activation of xenobiotic-sensing nuclear receptors such as PPARα, constitutive androstane 
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receptor (CAR), and pregnane X receptor (PXR) in the liver. The association of the incidence of 

liver tumor and hepatomegaly with the activation of xenosensor nuclear receptors in rodents has 

been well established (Lake, 2009). Specifically, the increase in liver weight can result from 

increased peroxisomal mass and expansion of the smooth endoplasmic reticulum by the activation 

of PPARα (Vanden Heuvel et al., 2006). The activation of CAR and PXR can also increase liver 

weight through the production of cytochromes with a consequent increase in cytochromal proteins 

(Elcombe et al., 2014). In addition, activation of PPARα, CAR, or PXR in rodents may trigger 

replicative DNA synthesis, resulting in proliferation of hepatocytes, and may decrease apoptosis 

of hepatocytes, potentially leading to clonal expansion of preneoplastic foci and, ultimately, liver 

carcinogenesis (Lake, 2018; Shizu et al., 2013). However, the mechanism for the observed liver 

toxicity in primates might be different from rodents because recent studies have shown relative 

less susceptibility of primates compared with rodents to peroxisome proliferation (Gonzalez and 

Shah, 2008). There might be other pathways/mechanisms by which PFOS can interfere with lipid 

metabolism in the liver in primates. Recently, Xu et al. (Xu et al., 2017) reported that the ERβ 

knockout mice did not have the adverse effects (hepatocyte vacuolization, hydropic degeneration, 

changes in levels of cholesterol and bile acids) that were observed in PFOS-exposed wild-type 

mice, suggesting the PFOS-induced liver toxicity may also involve the ERβ pathway.  

1.2.2 Selected critical animal studies  

Six animal studies in different species including the mouse, rat and monkey were included in our 

dose-response analyses (Table 1). These studies consistently show that PFOS exposure is 

significantly associated with increased absolute/relative liver weight. These studies are described 

in detail below: 

• Mouse: Two mouse studies were included in our analyses. Dong and his co-workers 
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conducted two mouse studies for PFOS exposure published in 2009 (Dong et al., 2009) 

and 2011 (Dong et al., 2011), respectively. Although the studies aimed to examine PFOS-

induced immunotoxicity, the liver weight was also measured and found to be increased 

significantly. In the first study (Dong et al., 2009), adult male C57BL/6 mice were exposed 

to PFOS daily via oral gavage for 60 days at the dose of 0, 0.5, 5, 25, 50, or 125 mg/kg/day. 

Their results showed that liver weight was significantly increased at the groups of ≥5 

mg/kg/day in a dose-dependent manner. In the second study (Dong et al., 2011), adult male 

C57BL/6 mice were exposed to PFOS daily via oral gavage for 60 days at the dose level 

of 0, 0.5, 5, 25, or 50 mg/kg/day. The results showed that several immune biomarkers were 

altered in a dose-dependent manner at ≥5 mg/kg/day dose groups, and the liver weight was 

also significantly increased at doses as low as 25 mg/kg/day. 

• Rat: Three rat studies were included in our analyses. In the first study, Seacat and his co-

workers (Seacat et al., 2003) conducted a 14-week (98-day) study in Sprague-Dawley (SD) 

rats. Rats were administered PFOS via the diet at concentrations of 0, 0.5, 2, 5, and 20 ppm 

(i.e., 0, 0.03, 0.13, 0.34, and 1.33 mg/kg in males and 0, 0.04, 0.15, 0.40, and 1.56 mg/kg 

in females) for 14 weeks (98 days). A thorough necropsy was performed at the end of 

treatment, and liver samples were collected. Absolute and relative (to body weight) liver 

weights were increased significantly in the males and males/females, respectively. In the 

second study (Curran et al., 2008), Sprague-Dawley rats were treated with PFOS at 0, 0.14, 

1.33, 3.21 or 6.34 mg/kg/day for 28 days, and the changes in clinical chemistry, hematology, 

histopathology, tissue residues and other effects were assessed. Tissue residue results 

showed a dose-dependent increase in most groups and mostly observed in liver. In the third 

study (Lefebvre et al., 2008), Sprague-Dawley rats were exposed to PFOS via dietary 
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exposure for 28 days at the doses ranging from 0.14 to 7.58 mg/kg/day and compared with 

those receiving control diet. The results showed that the body weight was significantly 

reduced in male and female rats exposed to 50 and 100 mg PFOS/kg diet. Moreover, the 

liver weight was significantly increased in females exposed to 2 mg/kg diet and in males 

exposed to 20 mg/kg diet.  

• Monkey: Only one monkey study was included in our study. Seacat et al. (2002) 

administered 0, 0.03, 0.15, or 0.75 mg/kg/day of PFOS orally in a capsule by intragastric 

intubation to cynomolgus monkeys (n=6). PFOS levels were determined in serum and liver 

tissue. Except for the group of 0.03 mg/kg/day, animals in other groups were exposed to 

PFOS for 26 weeks (182 days). Liver samples were obtained for hepatic peroxisome 

proliferation determination and immunohistochemistry. Mean absolute and relative (to 

body weight) liver weights were increased significantly in the 0.75 mg/kg/day dose group 

for both males and females. 

1.3. ToxCast in vitro assays 

1.3.1 Mode of action (MOA) considerations for in vitro studies 

The Toxicity Forecaster (ToxCast) database includes a large amount of high throughput screening 

datasets of in vitro and in vivo assays on over 9,000 chemicals. The 24 PFOS-activated in vitro 

assays which may link to PFOS-induced adverse outcomes were selected. The use of these in vitro 

assays was based on the hypothesis that these molecular initiating events (i.e., receptor activation) 

triggered by PFOS exposure might link cellular perturbations to adverse outcomes. For example, 

PPAR and ER activation support the MOA of PFOS-induced liver toxicity of PFOS observed in 

animal studies described previously (Chou et al., 2017; Das et al., 2017; Palmisano et al., 2017). 

In addition, the cellular responses, such as cytotoxicity, oxidative stress, DNA binding and cell 
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cycle effects have been reported to link to the PFOS-induced toxicity (Pierozan and Karlsson, 

2018). However, more specific mechanisms of each of these in vitro endpoints remain to be 

investigated. 

1.3.2 Selected critical ToxCast in vitro assays 

Twenty-four ToxCast assays were included in our study as shown in Table 2. These assays were 

designed to evaluate the effects of chemicals (e.g., PFOS) on the activities of human enzymes and 

transcription factors, including cell-free enzymatic and ligand-binding high-throughput screening 

assays (labeled with “NVS”) (Sipes et al., 2013), cell-based nuclear receptors and transcription 

factor response element (labeled with “ATG”) (Martin et al., 2010), cell-based high-content 

imaging (labeled with “APR”) (Shah et al., 2016) and cell-based protein expression (labeled with 

“BSK”) (Houck et al., 2009). Based on the U.S. EPA report (U.S. EPA, 2016), these in vitro dose-

response data sets were categorized into six groups by the molecular targets, including PPAR 

activation, neurotoxicity (in vitro), immunotoxicity, endocrine disruptors, and cellular responses 

(including cytotoxicity, mitochondria, oxidative stress, DNA binding and cell cycle effects). These 

molecular targets are discussed in detail below: 

• PPAR activation: Several studies have reported that PFOS can activate the PPAR pathway 

(Palmer et al., 1998; Shipley et al., 2004; Takacs and Abbott, 2007). In the ToxCast program, 

PFOS was found to induce DNA expressions of PPAR alpha (PPARα), peroxisome 

proliferator hormone response elements (PPRE), PPAR gamma (PPARγ), and to 

antagonize PPARγ receptor (Wambaugh et al., 2013). We included PPARα, PPRE and 

PPARγ assays in the present dose-response analysis.  

• Neurotoxicity: Five different neurological receptor families with seven different receptor 

types in ToxCast cell-based assays were activated by PFOS, including 5-
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hydroxytryptamine receptor (5HT) 5a, 6, and 7, adenosine A2a receptor (ADORA2), 

adrenoceptor alpha 2C (ADRA2C), and beta 1 (ADRB1) (U.S. EPA, 2016). These 

receptors are involved in the effects of neurotoxicity and were included in our study. 

• Immunotoxicity: In the ToxCast program, PFOS was found to be able to induce the 

expression of a variety of genes associated with immunotoxicity, such as chemokine ligand 

(CXCL) 10, CXCL8, collagen type II alpha (COL3A), interleukin-1 alpha (IL-1α), 

plasminogen activator (PLA), plasminogen activator urokinase (PLAUR), vascular cell 

adhesion molecule (VCAM1), and the TNF receptor subfamily gene CD40 (CD40) (U.S. 

EPA, 2016). Among these genes, VCAM1 and PLAUR have been reported to induce 

chronic inflammation and vascularization in vivo (Kleinstreuer et al., 2013). In this study, 

we included CXCL10, CXCL8, IL-1α, CD4, PLAUR, and VCAM1 ToxCast in vitro assays 

in the category of immunotoxicity dose-response analysis. 

• Endocrine disruption: Estrogen and its related receptors have been associated with sexual 

development and reproductive function and cancer (Makela et al., 1994). Four different 

estrogen receptor assays, all of which were related to estrogen receptor α (ESR α), were 

included in our study. In addition, the thyroid hormone receptor α was also included in the 

category of endocrine disruption dose-response analysis. 

• Cellular response: Several in vitro studies have shown that PFOS exposure can cause 

multiple cellular responses, including inhibition of DNA synthesis, deficits in cell growth 

and oxidative stress (Hu and Hu, 2009; Slotkin et al., 2008). These in vitro effects might 

help elucidate the toxic mechanisms of PFOS (Chen et al., 2014; Zeng et al., 2019). Thus, 

the cellular responses detected in ToxCast program, including cytotoxicity, oxidative stress, 

DNA binding and cell cycle effects were included in the dose-response analyses.  
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2. Bayesian hierarchical model 

In this study, we proposed a three-stage Bayesian hierarchical model for the dose-response analysis 

(Fig. S1). In the first level (i.e., the experiment level), our model accounted for the variability 

within experiment. The variable 𝑦𝑖𝑗 was denoted as measured response in the study j at the dose 

level i and was assumed to be distributed normally around the predicted value µ𝒊𝒋.  

𝑦𝑖𝑗  ~ 𝑁(𝜇𝑖𝑗, 𝜀) S1 

The measured response was modeled as a linear function of the dose: 𝑦𝑖𝑗 = µ𝒊𝒋  + 𝜀, where µ𝒊𝒋 is 

the mean response predicted by the dose-response model 𝑓𝑖𝑗, and 𝜀 is the random residual which 

is represented as half-normal distribution 𝜀 ~𝑁(0, 𝜎2). In the second level (i.e., the study level), 

we modeled the variability between studies in the hierarchical model as below:  

𝑎𝑖 ~ 𝐿𝑁(log(𝜇𝑎) , 𝜎𝑎), S2 

        𝑏𝑖 ~ 𝑈𝑛𝑖𝑓(𝑏𝑙𝑜𝑤𝑒𝑟, 𝑏𝑢𝑝𝑝𝑒𝑟), S3 

      𝑐𝑖 ~ 𝑈𝑛𝑖𝑓(𝑐𝑙𝑜𝑤𝑒𝑟, 𝑐𝑢𝑝𝑝𝑒𝑟), S4 

where the informative parameter “a” was assigned a log-normal prior distribution to ensure 

positive values and a realistic skewness. Note that µ𝑎  was assumed to be a geometric mean. 

Regarding the non-informative parameters b and c, uniform distribution with the lower bound 

(𝑏𝑙𝑜𝑤𝑒𝑟 or 𝑐𝑙𝑜𝑤𝑒𝑟) and upper bound (𝑏𝑢𝑝𝑝𝑒𝑟 or 𝑐𝑢𝑝𝑝𝑒𝑟) was assigned to these parameters. The lower 

bound and upper bound of the non-informative parameters were determined based on the 

biological consideration and prior information (the prior settings will be discussed in the next 

section). In the third stage (i.e., the population level), the population distribution with mean 𝜇𝑎 and 

standard deviation 𝜎𝑎 was described as follows: 

𝜇𝑎 ~ 𝑁(0,  𝑠𝑎), S5 



12 
 

      𝜎𝑎 ~ 𝐶𝑎𝑢𝑐ℎ𝑦(0,  𝜎𝑎), S6 

We used normal distribution for the location hyperparameters (i.e.,  𝜇𝑎 ) and half-Cauchy 

distribution for scale hyperparameters (i.e., 𝜎𝑎). We put a wide variance on  𝑠𝑎 (i.e., 1) to reflect 

the vague priors, while the 𝜎𝑎 was set a wide variance (i.e., 10) to reflect the weakly informative 

priors. The prior settings will be discussed in the next section. 

2.1 Settings of priors for model parameters 

The prior distribution is one of the critical elements in Bayesian interference. In the present study, 

the lognormal distribution was used in informative parameter a, yet the uniform distribution was 

used in non-informative parameters b and c. The prior settings were based on literature or prior 

information. For ToxCast dose-response data sets , the Hill dose-response model based on ToxCast 

data has been established (Watt and Judson 2018) and constrained to parameters as: (1) EC50 

(parameter a in the present study) ranging from the minimum log(concentration) minus 2 and the 

maximum log(concentration), (2) Emax (parameter b in the present study) constrained from 0 to 

1.2 (maximum response), and (3) the Hill coefficient (parameter c) constrained from 0.3 to 8. 

Furthermore, the Shao and Shapiro (2018) also addressed several settings in differing dose-

response models for prior distributions. The current settings of model parameter priors based on 

the above-mention considerations are as follows: 

For the 3-parameters Hill model,   

 sa = DoseMax S7 

 blower = 0,   bupper =  
Max(Res)−Min(Res)

DoseMax− DoseMin
 × 5 S8 

clower = 0,   cupper = 15 S9 

Where Max(Res) and Min(Res) are the maximum and minimum response values in the input 

datasets. And DoseMax and DoseMin are the dose levels corresponding to the maximum and 
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minimum responses, respectively. Based on the prior information from the previous study (Shao 

and Shapiro, 2018), the parameter b was defined as a slope-equivalent parameter and determined 

by the dose-response trend and the overall slope in the input data, which was constrained from 0 

to (
Max(Res)−Min(Res)

DoseMax− DoseMin
 × 5). On the other hand, the parameter g was constrained from 0 to 15. 

For the constrained parameters of log-formed Hill model,   

 sa = log (DoseMax) S10 

 blower = 0,   bupper =  1.2 ×  Max(Res) S11 

clower = 0.3,   cupper = 8 S12 

In the log-formed Hill model, the parameter b was constrained from 0 to 1.2 multiplied by the 

maximum response, while the parameter c was constrained from 0.3 to 8 (Watt and Judson 2018). 

 

3. Estimation of posterior parameters 

3.1. Convergence diagnosis 

Four Markov chains of 10,000 iterations each, for the human, animal and ToxCast in vitro dose-

response model, respectively, were run with the first 5,000 iterations as “burn-in” iterations and 

the last 5,000 iterations were used as output iterations to check convergences. Corrected Scale  

Reduction Factors (𝑅̂) were calculated for the four chains to diagnose the convergences of Markov 

chains based on the method of Brooks and Gelman (Brooks and Gelman, 1998). The 𝑅̂ values of 

population mean (µ𝑎) and standard deviation (𝜎𝑎) for informative parameter “a” in the human, 

animal and ToxCast in vitro dose-response models were ≤1.05 for all simulations. 

3.2. Markov chains trace plots 

The Markov chains trace plots and its probability density function plots for population mean (µ𝑎) 

and standard deviation (𝜎𝑎) of the informative parameter “a” are shown in Figs. S2-S3, which 
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provide a visualization of the Markov chains’ convergences. Specifically, a trace plot for the four 

chains plots the observed chain value (y-axis) against the corresponding iteration number (x-axis). 

The density plot for the four chains plots the observed chain value (x-axis) against density (y-axis). 

The well-mixed trace plots showed that the parameters reached the steady state. The trace plots of 

parameters b and c also reached the steady state (data not shown). 

 

4. Estimation of human population exceedance risk 

4.1. Estimation of population-based dose response analysis 

At the individual level, the model predicts posterior distribution of parameters a, b, and c for each 

individual, which can be used to estimate the uncertainty for each individual’s dose-response 

curves (Fig. 2). In the Bayesian hierarchical model (Fig. S1), population dose-response curves can 

be made using the estimated values of population-level parameters. In this case, the model predicts 

a posterior distribution for the population parameters 𝜇𝑎 and 𝜎𝑎, from which a virtual population 

of a can be generated via Monte Carlo sampling. Because the posterior distribution of 𝜇𝑎 and 𝜎𝑎 

are also sampled, two-dimensional Monte Carlo (MC) was conducted (via MCMC) to separately 

evaluate the variability and uncertainty in the population. First-dimension MC is to randomly 

sample population i = 1….5,000 from the posterior distribution of  𝜇𝑎 and 𝜎𝑎, resulting in the 

distribution across i which represents the uncertainty of population mean and standard deviation. 

Second-dimension MC is to draw j = 1….5,000 individual pairs of 𝑎𝑖,𝑗 ~ 𝐿𝑁(log(𝜇𝑎,𝑖) , 𝜎𝑎,𝑖) 

based on a given set 𝜇𝑎,𝑖 and 𝜎𝑎,𝑖 and non-informative parameters 𝑏𝑖,𝑗  𝑎𝑛𝑑 𝑐𝑖,𝑗. The pair of each i, 

j indicates an individual j (variability) drawing from the population i (uncertainty). Based on the 

population-level parameters, the population-level dose-response curves were reconstructed based 

on endpoints of serum cholesterol, PPAR activation, neurotoxicity, immunotoxicity, endocrine 
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disruptors and cellular response, respectively. 

 

4.2. Human biomonitoring data of the general population 

To characterize the human population exceedance risk, we collected the human biomonitoring data 

for PFOS serum concentrations in the general population from different areas of the world and 

summarized in Table S2. Theses PFOS concentrations from different countries and areas were 

assumed lognormal distribution with the reported concentration range and treated as the 

probability of D in the Equation 7 to estimate the population-based risk: exceedance probability 

(EP). In Table S2, the observed serum PFOS concentrations range from 0.05 to 214, 3.5 to 29.6, 

0.06 to 92.5, 0.4 to 1,656 ng/mL for the Asian, Australian, European, and North American 

populations, respectively. Median concentrations for PFOS from the North American populations 

appear to be higher than the European, Asian, and Australian populations (Table S2).  

 

5. Comparison of point of departure (POD) 

To better understand the results from the present Bayesian dose-response modeling, we compared 

the derived EC10 values from this study with the outputs from the U.S. EPA’s Benchmark Dose 

software (BMDS) and the recently published Bayesian Benchmark Dose interface (BBMD) 

developed by Shao and Shapiro (2018). The BMDS and BBMD systems were used to fit the same 

datasets to estimate BMD doses using the default settings. To compare the EC10 values derived 

from this study versus the BMDS and BBMD methods, the benchmark response (BMR) was set 

as 10% (BMR = 0.1) in all analyses. In order to select the best-estimated BMD in the BMDS, the 

results of the Hill model was selected first, and then the one with the lowest Akaike information 

criterion (AIC) value was chosen if the Hill model failed to fit the data. For the BBMD method, 
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the results were selected from the model-averaged BMD based on seven different dose-response 

models (e.g., Linear, Power, Hill and exponential model, etc.). All the results of POD estimation 

from different methods across the 34 selected datasets are summarized in Table S4. The range of 

PODs for human studies was estimated to be 0.19–7.13, 0.27–5.96 and 6.13–19.8 ng/mL from this 

study, BMDS and BBMD, respectively. For animal studies, the range of PODs was estimated to 

0.13–2.70 (this study), 0.11-2.14 (BMDS), and 0.31–2.57 (BBMD) mg/kg/day. In the ToxCast in 

vitro studies, the value ranged from 3.81 to 109, 0.96 to 94.23, and 0.69 to 69 µM based on the 

estimation of this study, BMDS and BBMD, respectively. The results showed that the PODs 

estimated from this study were similar to the outputs from BMDS and BBMD.  
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Note: the PBPK model simulated scenarios were daily oral exposure to PFOS at 1 mg/kg/day for 1 year in 

mice, rats, and monkeys, and for 50 years in humans.

6. Supplementary Tables 

 

Table S1 

Estimated steady-state concentration (Css), area under curve (AUC), average serum concentration (ASC), 

and average liver concentration (ALC) in mice, rats, monkeys, and humans using a multi-species PBPK 

model 

Species Css 

(µM) 

AUCserum 

(µg/mL*h) 

AUCliver 

(µg/mL*h) 

ASC 

(ng/mL) 

ALC 

(ng/mL) 

Mouse - - 6,912,827 - 462,833 

Rat - - 1,507,243 - 172,059 

Monkey - - 1,507,243 - 789,135 

Human 13,571 41,221,651 6,325,264,367 94,113 1441,240 
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Table S2  

Median, minimum and maximum concentrations of PFOS in human serum of general populations from Asia, 

Australia, Europe and North America 

PFOS Concentration (ng/mL) n 
Age 

(years) 
Country Reference 

Median Min Max     

Asia       

- ≤1 3.1 45 17-48 India Kannan et al. (2004) 

7.07 1.99 26.9 150 - Japan Harada et al. (2010) 

3.3 0.4 18.2 38 24-61 Sri Lanka Guruge et al. (2005) 

7.50 1.89 14.6 37 - Vietnam Harada et al. (2010) 

10.23 7.28 214 1,874 19-68 Korea Lee et al. (2017) 

1.3 0.05 19 202 0-90 China Li et al. (2017) 

Australia       

20.8 12.7 29.5 40 - Australia Kärrman  et al., (2006) 

- 3.5 19.9 100 0-61+ Australia Aylward et al. (2014) 

- 5 28.5 2,420 0-60+ Australia Toms  et al. (2009) 

Europe       

0.52 0.17 32 2,355 - Sweden Shu et al. (2018) 

18.5 8.20 40.2 190 30 Poland Lindh et al. (2012) 

7.60 2.77 29.9 203 25 Ukraine Lindh et al. (2012) 

6.31 0.06 29.6 230 36-65+ Siena, Italy Ingelido et al. (2010) 

6.05 0.28 38.58 1,240 - Spain Matilla-Santander  et al. (2017) 

- 1 92.5 256 5-69 Germany Hölzer et al. (2008) 

North America       

28.4 6.7 81.5 65 - U.S. Hansen et al. (2001) 

28.8 3.7 65.1 56 <20 Canada Kubwabo et al. (2004) 

35.8 ≤4.3 1656 645 20-69 U.S. Olsen et al. (2003) 

21.1 ≤0.4 435 2,094 12-60+ 

U.S., 

NHANES 

2003-2004 

Calafat et al. (2007) 

30.2 ≤3.4 175 238 65-96 
Seattle, 

U.S. 
Olsen et all. (2004b) 

- ≤1.3 164 175 17-72 U.S. Kannan et al. (2004) 

36.7 6.7 515 598 2-12 U.S. Olsen et al. (2004a) 
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Table S3  

Posterior parameters with 95% CI at the population level  

 Posterior population parameters estimation 

Type of dose-response data  𝝁𝒂 𝝈𝒂 b c 

Human studies 16.29 (3.13 – 72.06) 39.82 (37.5 – 40.56) 39.82 (37.5 – 40.56) 0.62 (0.44 – 0.85) 

Animal studies  2.53 (1.03 – 6.65) 145 (130 – 149) 145 (130 – 149) 1.65 (1.23 – 2.18) 

ToxCast for PPAR activation 98.1 (33.9 – 278.7) 578 (549 – 595) 578 (549 – 595) 6.87 (4.00 – 8.89) 

ToxCast for neurotoxicity  14.8 (7.0 – 32.52) 76.3 (65.6 – 93.1) 76.3 (65.6 – 93.1) 2.95 (1.37 – 7.93) 

ToxCast for immunotoxicity 51.9 (27.7 – 86.8) 615 (587 – 626) 615 (587 – 626) 4.07 (3.46 – 5.68) 

ToxCast for endocrine disruption 137 (58.4 – 325) 357 (315 – 365) 357 (315 – 365) 2.11 (1.53 – 3.88) 

ToxCast for cellular response 189 (122 – 282) 397 (372 – 433) 397 (372 – 433) 3.65 (3.13 – 4.52) 

Footnote: population mean (𝜇𝑎) and standard deviation (𝜎𝑎) of the parameter a reflect the variability of EC50 in the Hill dose-response model in 

different datasets. The unit of 𝜇𝑎 and 𝜎𝑎 is ng/mL in humans, mg/kg/day in animal studies, and μM in ToxCast in vitro studies. The parameter b 

with the unit of percentage (% of control change) represents the Emax in the model, and c represents the Hill coefficient (unitless).  
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Table S4  

Comparison of the derived EC10 values from this study with the outputs from BMD and BBMD in 

the human, animal in vivo, and ToxCast in vitro studies 

Reference or ToxCast assay This study  

(at EC = 0.1) 

BMDa  

(at BMR = 0.1) 

BBMDb  

(at BMR = 0.1) 

Human epidemiological studies    

Steenland et al. (2009)  2.28 (1.05 – 4.12)c 5.96 (0.94 – 10.13) 6.13 (3.44 – 8.82) 

Eriksen et al. (2013) 0.19 (0.031 – 0.66) 0.27 (0.18 - 0.49) 19.8 (7.31 – 44.5) 

Nelson et al. (2010) 1.85 (0.75 – 3.60) 3.99 (2.16 – 15.41) 15.45 (9.81 – 30.9) 

Château-Degat  et al. (2010) 7.13 (4.06 – 11.04) 4.77 (2.89 – 10.1) 9.37 (5.57 – 16.5) 

Animal in vivo studies    

Seacat et al. (2002) 0.55 (0.32 – 1.01) 0.26 (0.15 – 0.80) 0.56 (0.22 – 1.17) 

Seacat et al. (2003) 0.20 (0.12 – 0.31) 0.19 (0.12 - 0.45) 0.35 (0.13 – 0.73) 

Curran et al. (2008) 2.70 (1.66 – 4.60) 0.25 (0.13 – 0.75) 2.57 (1.0 – 5.5) 

Dong et al.(2009) 0.22 (0.13 – 0.33) 0.37 (0.03 – 0.39) 0.31 (0.12 – 0.63)  

Dong et al. (2011) 0.13 (0.07 – 0.22) 0.11 (0.08 – 0.16) 0.75 (0.29 – 1.51) 

Lefebvre et al. (2008) 2.67 (1.66 – 4.48) 2.14 (1.4 – 4.88) 2.57 (1.0 – 5.48) 

ToxCast in vitro assays    

ATG_PPRE_CIS_up 38.1 (24.9 – 44.8) 13.99 (4.42 – 17.65) 17.11 (7.40 – 33.42) 

ATG_PPARa_TRANS_up 105 (67.6 – 125) 51.06 (16.7 – 59.6) 64.15 (27.76 - 124) 

ATG_PPARg_TRANS_up 16.8 (11.2 – 25.3) 19.55 (18.6 – 43.2) 69.0 (24.6 – 160.9) 

NVS_GPCR_h5HT5A 3.81 (0.86 – 10.8) 3.74 (1.83 – 18.9) 12.07 (5.15 – 24.3) 

NVS_GPCR_h5HT6 11.6 (3.35 – 23.8) 19.17 (18.2 – 33.11) 18.44 (8.3 – 37.8) 

NVS_GPCR_h5HT7 4.04 (1.29 – 8.78) 5.29 (5.05 – 5.74) 16.2 (5.99 – 35.6) 

NVS_GPCR_hAdoRA2a 1.62 (0.48 – 3.96) 5.27 (2.97 – 5.83) 9.96 (4.49 – 20.4) 

NVS_GPCR_hAdra2C 6.03 (1.75 – 13.5) 16.34 (5.49 – 17.5) 5.36 (2.21 – 12.6) 

NVS_GPCR_hAdrb1 9.78 (2.43 – 20.8) 18.5 (4.14 – 19.83) 9.41 (4.23 – 19.9) 

BSK_SAg_CD40_down 24.4 (21.1 – 30.1) 9.64 (9.29 – 10.37) 16.1 (8.7 – 29.1) 

BSK_BE3C_IP10_down 5.67 (4.77 – 6.99) 0.96 (0.76 – 1.32) 7.83 (3.43 – 47.4) 

BSK_BE3C_IL1a_down 9.56 (7.91 – 14.9) 18.96 (17.29 – 21.64) 13.5 (7.9 – 39.6) 

BSK_LPS_IL8_up 31.3 (25.4 – 147.6) 8.72 (3.98 – 9.91) 8.19 (2.34 – 19.9) 

BSK_3C_uPAR_down 23.2 (20.1 – 28.7) 9.18 (8.88 – 9.62) 19.9 (8.98 – 40.5) 

BSK_CASM3C_VCAM1_down 30.1 (24.9 – 54.8) 6.69 (4.12 – 15.24) 10.5 (2.18 – 31.1) 

OT_ER_ERaERb_0480 7.76 (4.97 – 12.7) 6.54 (4.78 – 10.45) 74.5 (29.5 - 155) 

ATG_ERa_TRANS_up 21.1 (14.7 – 30.8) 16.94 (16.29 – 17.86) 25.2 (10.3 – 49.3) 

ATG_ERE_CIS_up 13.4 (9.6 – 20.0) 1.49 (0.83 – 3.69) 13.9 (5.39 – 28.16) 

NVS_NR_hTRa_Antagonist 67.3 (39.3 – 168) 28.52 (6.26 – 87.84) 24.58 (13.37 – 46.64) 

APR_HepG2_CellLoss_24h_dn 78.1 (67.8 – 90.1) 94.23 (90.9 – 99.43) 38.8 (36.4 – 41.1) 

APR_HepG2_MitoMass_24h_dn 109 (94.9 – 129) 48.28 (19.22 – 86.82) 0.69 (0.11 – 61.9) 

APR_HepG2_OxidativeStress_24h_up 61.7 (52.5 – 73.4) 45.55 (39.71 – 61.52) 73.3 (31.8 - 145) 

APR_HepG2_p53Act_24h_up 50.2 (40.3 – 55.4) 16.54 (15.63  - 17.78) 18.3 (13.7 – 22.3) 

APR_HepG2_MitoticArrest_24h_up 89.1 (77.6 – 102.2) 40.15 (31.26 – 51.19) 38.0 (32.4 – 42.1) 
aCalculated using the EPA’s Benchmark Dose Software (BMDS 3.1); 
bCalculated using the web-based interface: Bayesian BMD (BBMD) estimation (https://benchmarkdose.org/) (Shao 

and Shapiro 2018);  
cThe values represent the estimated EC10 or BMD with its lower- and upper confidence limit. 

https://benchmarkdose.org/
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7. Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S1 Bayesian hierarchical model for the dose-response analysis (modified from  Chiu et al., (2014)). The 

square symbol denotes a constant or an assigned probability; the circle symbol denotes a variable; and 

the inverted triangle symbol represents the dose-response model function. The solid arrows indicate 

a stochastic dependency by a conditional probability [e.g., X→Y: Y ~ P(Y|X)], while the heavy dashed 

arrows indicate the functional relationship [e.g., Y = f(X)]. The population consisted of studies i, each 

of which contained experiments j, with response data  𝒚𝒊𝒋  collected at the exposure dose 𝒅𝒊𝒋 . The 

differences between the measured responses and predictions were assumed to have a distribution with 

variance 𝜺, which was assigned a prior distribution (Pr). The dose-response model used informative 

parameter 𝒂𝒊 and non-informative parameters 𝒃𝒊 and 𝒄𝒊. Informative parameter 𝒂𝒊 values were drawn 

from a population distribution with mean 𝝁𝒂 and variance 𝝈𝒂, each of which was in turn assigned as 

prior distributions. Non-informative parameters were assigned the uniform distribution with lower-

bound and upper-bound constrained values. 
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Fig. S2 Traces (A) and probability (B) density plots of four Markov chains of the last 5,000 iterations of the MCMC simulation for the population 

mean (𝜇𝑎) of the parameter “a” in (A1, B1) humans, (A2, B2) animals, (A3, B3) ToxCast-PPAR, (A4, B4) ToxCast-neurotoxicity, (A5, B5) 

ToxCast-immunotoxicity, (A6, B6) endocrine disruptors, and (A7, B7) ToxCast-cellular response. Potential scale reduction factors: R̂ =1.0 - 

1.01. Shadow area indicates the first 5,000 burn-in iterations. 
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Fig. S3 Traces (A) and probability (B) density plots of four Markov chains of the last 5,000 iterations of the MCMC simulation for the population 

stand deviation (𝜎𝑎) of the parameter “a” in (A1, B1) humans, (A2, B2) animals, (A3, B3) ToxCast-PPAR, (A4, B4) ToxCast-neurotoxicity, 

(A5, B5) ToxCast-immunotoxicity, (A6, B6) endocrine disruptors, and (A7, B7) ToxCast-cellular response. Potential scale reduction factors: 

R̂ =1.0 - 1.01. Shadow area indicates the first 5,000 burn-in iterations. 
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8. Additional files and instructions 

8.1. Additional files 

The additional files include several separate zip files: ModCode.zip, Datasets.zip, 

ResultsCode.zip and BMDS_BBMD_Analysis.zip. 

• ModCode.zip file: R codes for the dose-response model based on the human, animal, and 

ToxCast in vitro studies are included in this zip file. 

- STANCode: The STAN code for model fitting with the dose-response data. 

- RScript: The R code for computing the STAN code. 

• Datasets.zip file: All datasets used in the dose-response model development are included 

in this zip file. Please refer to Table 1 and Table 2 for details about these datasets. 

• ResultsCode.zip file:  This zip file contains the R codes used to generate all results 

presented in the manuscript.    

“PlotCode” folder: 

- Code for Fig_2_3: The R code used to generate results in Fig. 2 and Fig. 3 

- Code for Fig_4: The R code used to generate results in Fig. 4. 

- Code for Fig_5: The R code used to generate results in Fig. 5 and Table 4. 

- Code for Fig_S2_S3: The R code used to generate results in Fig. S2 and Fig. S3. 

- Code for Table_3: The R code used to generate results in Table 3. 

           “StanResults” folder: 

- Data.rds: The “rds” file stores all the observed data from selected human, animal and ToxCast 

in vitro studies. 

- EC10Dat.rds: This “rds” file contains the results of EC10 values estimated from the Bayesian 

dose-response model. 
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- Fit.rds: This “rds” file contains all the fitting results after running the Bayesian dose-response 

model. This file is not provided in this folder because the size of this file is 916 MB, which 

exceeds the maximum file size of 700 MB for uploading to the submission system of 

Environment International. However, this file is available upon request from the 

corresponding author. 

- Theta.names.rds: This “rds” file stores all the parameter names used in the PBPK model. 

- Snames.rds: This “rds” file stores all the parameter names used in the Bayesian dose-response 

model. 

- MCMC_.rds: These “rds” files contain all results of the final parameter estimates from the 

MCMC simulations using the PBPK model in mice (MCMC_Mice.rds), rats 

(MCMC_Rat.rds), monkeys (MCMC_Monkey.rds), and humans (MCMC_Human.rds). 

- PBPK_.rds: These “rds” files contain the PBPK-mrgsolve code for mice (PBPK_Mice.rds), 

rats (PBPK_Rat.rds), monkeys (PBPK_Monkey.rds), and humans (PBPK_Human.rds). 

• BMDS_BBMD_Analysis.zip file:  This zip file contains the BBMD report, BMD report 

and input datasets.  

8.2. Instructions on the model code 

• This instruction can be separated into two parts, including Part I: Dose-response model 

development; and Part II: reproducing all results presented in the figures and tables in the 

manuscript.  

Part I: Dose-response model development using Stan code 

• Open the supplementary files: unzip all zip files → open the folder “ModCode”→ open the R files 

“STANCode” and “Rscript” using RStudio. 

• Set your working directory: Set your working directory as the folder “Datasets”. 

• Run the Stan code: Run all the code in the “STANCode” R file to compile the dose-response model. 

• Run the R code: Run the code in the “RScript” R file step by step as described below: 
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• Lines 1–5: Loading the required R packages 

• Lines 7–11: Set up the Rstan model setting 

• Lines 13 – 178: Read the datasets from external files and create a parameter list for each endpoint 

for use in the STAN model. 

• Lines 180 – 187: Create the parameters for which you want to generate the output results 

• Lines 189 – 197: Create the required parameters for running MCMC in STAN  

• Lines 199 – 209: Create the list of model code and data sets 

• Lines 211 – 231: Define the function for running all STAN models  

• Lines 232-234: Execute the STAN model 

• Lines 235-239: Create the empty list for saving the required variables of plot 

• Lines 240 – 266: Execute the code for posterior dose response plots 

• Lines 268 – 276: View the posterior dose-response plots 

• Lines 277 – 279: Save the data and results from the STAN dose-response model simulation 

Part II: Reproduce the results in the figures and tables of the manuscript 

• Open the folder “ResultsCode”. The folder includes two subfolders: “StanResults” and “PlotCode”. 

The PlotCode folder stores all R codes for reproducing results presented in the figures and tables 

in the present manuscript. The “StanResults” folder stores the results after running the Bayesian 

dose-response model using STAN as different “.rds” files. Please refer to the Section 8.1 above for 

a detailed explanation of each “.rds” file. 

• Set the working directory as the folder “StanResults” before running each figure or table code file.  

• Open one of the R codes under the folder “PlotCode” and run it to reproduce the results presented 

in the corresponding figure and/or table in the manuscript.
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