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A B S T R A C T

A challenge in the risk assessment of perfluorooctane sulfonate (PFOS) is the large interspecies differences in its
toxicokinetics that results in substantial uncertainty in the dosimetry and toxicity extrapolation from animals to
humans. To address this challenge, the objective of this study was to develop an open-source physiologically
based pharmacokinetic (PBPK) model accounting for species-specific toxicokinetic parameters of PFOS.
Considering available knowledge about the toxicokinetic properties of PFOS, a PBPK model for PFOS in mice,
rats, monkeys, and humans after intravenous and oral administrations was created. Available species-specific
toxicokinetic data were used for model calibration and optimization, and independent datasets were used for
model evaluation. Bayesian statistical analysis using Markov chain Monte Carlo (MCMC) simulation was per-
formed to optimize the model and to characterize the uncertainty and interspecies variability of chemical-
specific parameters. The model predictions well correlated with the majority of datasets for all four species, and
the model was validated with independent data in rats, monkeys, and humans. The model was applied to predict
human equivalent doses (HEDs) based on reported points of departure in selected critical toxicity studies in rats
and monkeys following U.S. EPA's guidelines. The lower bounds of the model-derived HEDs were overall lower
than the HEDs estimated by U.S. EPA (e.g., 0.2 vs. 1.3 μg/kg/day based on the rat plasma data). This integrated
and comparative analysis provides an important step towards improving interspecies extrapolation and quan-
titative risk assessment of PFOS, and this open-source model provides a foundation for developing models for
other perfluoroalkyl substances.

1. Introduction

Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant
that is used in a wide variety of consumer products, including cook-
ware, furniture, household cleaners, and clothing; and it has been found
to be ubiquitous in the environment (ATSDR, 2018). Due to its long
half-life in humans (Olsen et al., 2007), environmental persistence,
confirmed human environmental and occupational exposures (Calafat
et al., 2006; Calafat et al., 2007; Olsen et al., 2003b; Olsen et al., 2008),

as well as reported mammalian toxicity (Elcombe et al., 2012a; Seacat
et al., 2003; Seacat et al., 2002), the potential risk of PFOS has become
a public health concern. However, because of its substantial inter-
species differences in toxicokinetics, its risk assessment and dosimetry
extrapolation between animals and humans are difficult and of high
uncertainty, which can be addressed through a physiologically based
pharmacokinetic (PBPK) model that is validated in multiple species.

PFOS is known to be well absorbed in the gastrointestinal tract
following oral exposure (Chang et al., 2012), minimally metabolized,
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has a high affinity to serum albumin (Beesoon and Martin, 2015),
poorly eliminated (Butenhoff et al., 2012; Harada et al., 2007) and
mainly accumulated in liver and plasma (Bogdanska et al., 2011; Cui
et al., 2009; Seacat et al., 2002). PFOS elimination is highly variable
between species. The half-lives of PFOS range from days in rats
(7–82 days) (Chang et al., 2012; Kim et al., 2016) and mice
(30–42 days) (Chang et al., 2012), weeks in monkeys (15–24weeks)
(Chang et al., 2012; Seacat et al., 2002) to years in humans
(3.3–6.9 years) (Olsen et al., 2007; Worley et al., 2017a). This species
specificity in biological half-lives of PFOS has been considered to be
similar to that of the more extensively studied structurally similar
compound perfluorooctanoic acid (PFOA). It has been proposed that the
hormonally-mediated, saturable renal reabsorption of PFOA and PFOS
via organic anion transporters (OATs) expressed on the apical and ba-
solateral membranes of the proximal tubule cells (PTCs) plays a key
role, contributing to the large variation of biological half-lives of PFOA
and PFOS between species (Kudo et al., 2002; Weaver et al., 2010; Yang
et al., 2010a). The role of transporter-mediated renal reabsorption in
the differential retention of PFOA and PFOS across species has been
supported by the earlier physiologically-motivated modeling studies
(Andersen et al., 2006; Loccisano et al., 2011; Tan et al., 2008).

To aid risk assessment of PFOS and related compounds, pharma-
cokinetic and PBPK modeling studies for PFOA and PFOS have been
conducted in humans, monkeys and rats (Andersen et al., 2006; Fabrega
et al., 2015; Fabrega et al., 2014; Fabrega et al., 2016; Loccisano et al.,
2011; Loccisano et al., 2012; Tan et al., 2008; Wambaugh et al., 2013;
Worley and Fisher, 2015; Worley et al., 2017b). In general, these
models simulate the prolonged serum half-life by including a renal re-
absorption process of PFOA or PFOS from the filtrate compartment back
into the systematic circulation via renal transporter proteins. In the
earlier modeling studies for PFOA and PFOS, Andersen et al. and Tan
et al. (Andersen et al., 2006; Tan et al., 2008) developed a physiolo-
gically-motivated model accounting for the saturable renal resorption
to simulate the monkey and rat data. The main contribution from these
earlier studies was to show explicitly that saturable renal reabsorption
process could result in the observed dose-dependent relationship at

higher doses in monkeys (i.e., clearance increased with increasing
doses) and the need to include a filtrate subcompartment in the active
transporters-mediated process of the kidney compartment. Subse-
quently, Loccisano et al. expanded their model by integrating physio-
logically relevant compartments to develop a PBPK model (Loccisano
et al., 2011; Loccisano et al., 2012). More recently, Worley and Fisher
et al. (Worley and Fisher, 2015; Worley et al., 2017b) expanded Loc-
cisano's model (Loccisano et al., 2012) by including physiological de-
scription of both basolateral and apical membrane transports for the
simulation of sex-specific kinetics of excretion and reabsorption of
PFOA in kidneys. In addition, a compartmental model for PFOA and
PFOS was developed by Wambaugh et al. (2013) based on the phy-
siologically-motivated compartment model of Andersen et al. (2006) to
simulate the internal dosimetry in the rat, mouse, and monkey. U.S.
EPA applied Wambaugh's model to derive chronic oral reference doses
(RfDs) for PFOA and PFOS (EPA, 2016a, 2016b). The compartmental
model was able to describe the experimental data well, but there are
some limitations and uncertainty as the model is not physiologically
based and the parameters are not biologically plausible and thus are of
high uncertainty (Dong et al., 2017; Wambaugh, 2018).

In order to address the above-mentioned data gaps and limitations,
the objective of this study was to develop and validate a more robust
PBPK model for PFOS in multiple species, including mice, rats, mon-
keys, and humans. Bayesian analysis with Markov chain Monte Carlo
(MCMC) simulation was performed to characterize the uncertainty of
parameters and to further improve the model reliability. A sensitivity
analysis of the optimized model parameters was conducted to assess the
impact of uncertainty/variability in model parameter values on pre-
dictions of output across species. Furthermore, model applications were
performed to predict internal dosimetry of relevance to risk assessment
for reducing the uncertainty of extrapolation from animals to humans in
the derivation of acceptable exposure levels. All model codes and raw
data are provided in the Supplemental Materials to allow to reproduce
our results and facilitate the application and extrapolation of this model
to other perfluoroalkyl substances.

Fig. 1. Schematic illustration of the Bayesian-MCMC PBPK modeling approach. (A) The first step for model development and calibration is to obtain estimated
parameters as prior information for subsequent MCMC analysis. (B) The second step is to define a prior distribution for each of the variable parameters (θi) drawing
from the population mean (μ) and variance (Ʃ2). (C) Bayesian-PBPK analysis was used to update the prior distribution (Pri(θi, K)) with experimental data Yij to
generate the (D) posterior distribution (Pos(θi, K′)) using MCMC simulations. The PBPK model f depends on measured covariate φi. Exposure regimen Ei relates the
prior parameters θi to experimental data Yij for individual i (i=1…n) and specific experiment j (j=1…n) at the time point tij. The difference between the observed
and predicted values (i.e., residual error, εj) has variance σ2. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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2. Materials and methods

2.1. Study framework

The study framework is illustrated in Fig. 1. To characterize the
interspecies uncertainties and variability of model parameters, a hier-
archical Bayesian approach was applied to the PFOS PBPK model across
species. The basic element of this study includes: (1) the development of
multiple-species PFOS PBPK model (Fig. 1A), (2) Bayesian analysis with
MCMC simulation (Fig. 1B–C), and (3) evaluation of posterior para-
meters (Fig. 1D).

2.2. Model development and evaluation

2.2.1. PBPK model development
A consistent PBPK model structure for PFOS was used in all studied

species, including the mouse, rat, monkey, and human (Fig. 2). The
model structure was based on the recently published PBPK models for
PFOA (Worley and Fisher, 2015; Worley et al., 2017b) to allow parallel
comparisons of the simulation results for these two structurally similar
compounds. In brief, the model consisted of four organ compartments
(plasma, liver, kidney, and rest of the body) (Fig. 2A). A two-com-
partment model was used to simulate the gastrointestinal (GI) tract
(stomach and small intestine) (Fig. 2B), and the kidney was described as
a three-compartment model comprising of proximal tubule lumen/fil-
trate, PTCs, and the rest of kidney (Fig. 2C). Both intravenous (IV) and
oral exposure routes were included in this model.

In the oral exposure route, PFOS enters the small intestine with a
rate defined by the gastric emptying time (GE, first-order constant) after
oral administration of PFOS into the stomach. Uptake in the stomach
was described using a first-order rate constant (K0) while the first-order
rate constant (Kabs) was used to describe the uptake of PFOS in the
small intestine. PFOS absorbed in the GI tract is transported to the liver
via the portal vein. IV administration of PFOS was simulated to enter
directly into systematic circulation.

In the kidney compartment, PFOS enters the filtrate in the lumen of
the proximal tubule from kidney blood via glomerular filtration (GFR),
and subsequently is excreted to the urine via a first-order rate constant
(Kurine) or actively translocated into PTCs via apical transporters de-
scribed by non-linear Michaelis-Menten parameters Vmax_apical and
Km_apical. PFOS is also translocated into the PTCs from kidney blood
via basolateral transporters, and this process was also described using
the Michaelis-Menten equation with the parameters of Vmax_baso and
Km_baso. PFOS is also passively translocated into the PTCs via a dif-
fusion rate constant (Kdif). Moreover, a previous study has suggested
that a possible efflux pathway could actively transport the intracellular
PFOS back into systemic circulation (Yang et al., 2010a). This model
described this movement using a first-order rate constant (Kefflux).
Taken together, the renal resorption pathway was simulated by the
apical transporters-mediated active process (Vmax_apical and Km_a-
pical) plus a first-order efflux process (Kefflux).

PFOS is heavily bound to plasma proteins in rats, monkeys, and
humans following in vitro incubation (Kerstner-Wood et al., 2003).
Only the free fraction (Free) of PFOS was assumed to be available for
distribution. This was simulated using a free fraction constant (Free)
that was multiplied by the total concentration of PFOS in the plasma to
describe the unbound PFOS moving into and out of each compartment.
Excretion of PFOS includes biliary, urinary, and fecal pathways de-
scribed as a first-order elimination process in the model. The complete
mathematical description is provided in Supplemental Materials.

2.2.2. Key in vivo toxicokinetic data
An extensive search of PFOS in vivo toxicokinetic (TK) datasets was

performed to collect data for model calibration and evaluation. The
datasets used in this study were listed in Table 1 with the indication of
the exposure route (oral gavage and/or IV dosing routes), dosing re-
gimens, matrix (plasma, urine, feces, liver and/or kidney), and species,
as well as the purpose of each dataset (calibration, optimization and
evaluation). All 19 PFOS TK studies in the mouse (CD-1), rat (Sprague-
Dawley), monkey (Cynomolgus) and human (general population) were

Fig. 2. Overall structure of the PBPK model for PFOS in the mouse, rat, monkey and human. The model structure was modified based on Worley and Fisher (2015)
and Worley et al. (2017b). The parameter symbols were defined in Table 2. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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used for model development and evaluation (Table 1). Only data in
males were considered in this study due to the possible gender differ-
ence in the TK properties of PFOS (Kim et al., 2016; Li et al., 2017b).
The present model serves as a foundation to extrapolate to females,
which is a subject of our future studies. Additional details describing
the data sets are provided in the Supplementary materials.

2.2.3. Preliminary model calibration
To provide prior distributions for the model parameters and to

improve the performance of the model optimization using the Markov
chain Monte Carlo (MCMC) algorithm, preliminary model calibration
for the PBPK model was performed. Prior to the calibration analysis, a
local sensitivity analysis was conducted for all selected model para-
meters using R package FME (Soetaert and Petzoldt, 2010) to identify
sensitive parameters in the model. The initial model parameter values
including physiological parameters (Table S1a) and chemical-specific
parameters (Table S1b) were from the previous PBPK models for PFOA
or PFOS in mice, rats, monkeys, and humans. Then, the sensitive
parameters, as shown in Table S2a, were estimated using the Le-
venberg–Marquardt algorithm based on available in vivo calibration
datasets for each species (Table 2). The estimated parameters for each
species were presented in Table 2 as the prior information for inclusion
in the subsequent parameter optimization using the Bayesian MCMC
method. All species-specific physiological parameters were adapted
from the literature and listed in Table 2.

2.3. Bayesian approach to optimize the PBPK model parameters

A reported hierarchical Bayesian approach (Bois, 2000; Bois et al.,
1996; Gelman et al., 1996) was used to characterize the uncertainty and
variability of model parameters in the present PFOS PBPK model for
each species. This method has been extensively applied in the char-
acterization of PBPK model parameters (Chiu et al., 2014; Chiu and
Ginsberg, 2011; Chiu et al., 2009; Hack et al., 2006). In the hierarchical
structure (as illustrated in Fig. 1), the analysis was composed of dif-
ferent levels, including the population level, individual level (i), and
study level (j). The population level contained hyperprior distributions
for the population mean (μ) and variance (Ʃ2) for each of the selected

parameters, reflecting the population variability and uncertainty of
individual values. At the subject level, each model parameter (θ) is
drawing by random sampling from the population mean (μ) and var-
iance (Ʃ2) (Fig. 1A and B). The predicted value of experimental data (j),
for each subject i, is determined by a model function f (i.e. the PBPK
model) of exposure regimen (E), dosing time (t), a set of model para-
meters (θ) and fixed parameters (φ) (e.g., body weight, tissue volume):
fij (θi,φi,Eij, ti). The specification of the conditional dependencies among
the population and subject parameters link the model f to the data (y)
and unknown error (ε) (Fig. 1C). The unknown ε error that represents
the measurement or model error was assumed to be independent and
log-normally distributed with mean of zero and variance σ2.

The focus of this study was to characterize the uncertainty and
variability of key and unmeasured/unknown parameters across species
and its related parameters, rather than estimating every possible model
parameter. Thus, only highly sensitive model parameters were con-
sidered in the Bayesian analysis. Physiological parameters, such as the
body weight, tissue volumes, and plasma flow rates were obtained from
the literature and were fixed in the Bayesian analysis.

2.3.1. Assignment of prior parameter distributions
As described above, the prior distribution for the population mean

(μ) was specified based on the hyperparameter mean value (M) and the
variance (S2). The M value for each model parameter was taken from
the literature or estimated from the preliminary model calibration
(Table 2). All prior parameters were defined with a log-normal dis-
tribution and the log-transformed parameters were described with a
truncated normal distribution (2.5%–97.5%). The distribution for the
population mean (μ) was truncated to include 95% of the distribution
(mean ± 1.96 SD for a normal distribution) to avoid sampling from
implausible values. Depending on the uncertainty of parameters, the S
value of each parameter was assumed to be the value of 50% for the
coefficient of variance (CV) in the model (Hack et al., 2006).

Prior distribution for the population variances (Σ2) were defined
using inverse gamma distributions: Γ−1(α,β), where α is the shape
parameter (α > 0) and β is the inverse scale parameter (β > 0). The
value of α is equal to 3 based on the assumption of 100% coefficient of
uncertainty (CU), and β is set to equal to (α− 1) ∙ Σ0

2 (Hack et al.,

Table 1
Pharmacokinetic studies in rats, mice, monkeys, and humans used for model development and evaluation.

Reference Dose regimen Matrix Cal Opt Eva

Sprague Dawley rat
3M unpublished data Single oral dose at 2 mg/kg Plasma X
Chang et al. (2012) Single oral dose at 4.2 mg/kg Plasma X
Johnson et al. (1979) Single IV dose at 4.2mg/kg Urine X
Kim et al. (2016) Single oral dose at 2 mg/kg Plasma X
Kim et al. (2016) Single IV dose at 2mg/kg Plasma X
3M unpublished data Daily oral dose at 1mg/kg for 4 weeks Plasma X
3M unpublished data Single oral dose at 15mg/kg Plasma X
Chang et al. (2012) Single oral dose at 15mg/kg Urine X
Seacat et al. (2003) Daily oral dose at 0.03, 0.13, 0.34, 1.33mg/kg for 14 weeks Plasma; liver X

CD-1 mouse
Chang et al. (2012) Single oral dose at 20mg/kg Plasma; liver, kidney, urine X
Chang et al. (2012) Single oral dose at 1 mg/kg Plasma; liver, kidney, urine X

Cynomolgus monkey
Chang et al. (2012) Single IV dose at 2mg/kg Urine, plasma X
Seacat et al. (2002) Daily oral dose at 0.03, 0.15 and 0.75mg/kg for 26 weeks Plasma X
Seacat et al. (2002) Daily oral dose at 0.03, 0.15 and 0.75mg/kg for 26 weeks Liver X

Human: general population
Haug et al. (2009) Unknown Plasma X X
Fabrega et al. (2014) Unknown Plasma; liver, kidney X
Olsen et al. (2003a) Unknown Plasma X
Olsen et al. (2003b) Unknown Liver X
Olsen et al. (2008) Unknown Plasma X

Note: All graphic pharmacokinetic data were extracted from selected studies using WebPlotDigitizer (version 4.10, https://automeris.io/WebPlotDigitizer/; last
accessed December 28, 2018.). The 3M unpublished data were extracted from the Loccisano et al. (2012). Cal: Calibration; Opt: Optimized by MCMC algorithm; Eva:
Evaluation.
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2006). The Σ0
2 is the central value of population variance (Σ2), and

most parameters was set to 30% to represent the moderate level of
variations. Due to possible high uncertainty existed in unmeasured
parameters such as Vmax and Km of basolateral/apical transporters in
PTCs, a 50% of CV was assigned to these parameters. In addition, the
prior distribution of unknown error (σ2) was modeled as a log-uniform
distribution at the central value of 0.5 with the boundary of 0.01 and
3.3 for all measurements (Covington et al., 2007; Hack et al., 2006).

2.3.2. Bayesian-MCMC simulation
From Bayes' theorem, the joint posterior distribution of the para-

meter p(θ,μ,Σ2,σ2|y) is proportional to the likelihood of data multiplied
by the prior distribution. Then, the posterior distribution updated by
incorporation of new data was written as:

p θ σ y φ E t( , μ, Σ , , , , )2 2

∝ ∙ ∙ ∙ ∙p y θ σ φ E t p θ μ p μ p p σ( | , , , , ) ( | , Σ ) ( ) (Σ ) ( )2 2 2 2

where the p(y|θ, σ2, φ, E, t) is the likelihood of data term, which is
written as log(y)~N(logf(θ,φ,E, t),σ2) by normal measurement model.

At the subject level, the PFOS concentration at time point t was pre-
dicted by the PBPK model f based on a set of prior parameters (θ,φ,E, t)
with an independent variance σ2, which is related to the observed data
y. Similarly, the joint prior parameters were written by normal mea-
surement model. As described above, the joint probability of θ: p(θ|μ,
Σ2) was specified by truncated normal measurement model, which was
written as log(θi)~N(μ,Σ2). Each probability of μ and Σ2: p(μ), p(Σ2) is
assigned with an independent hyperprior distribution as: log (μ) ~ N
(M, S2), and population variances (Σ2): Γ−1(3,2Σ0

2). The probability of
unknown error p(σ2) is assigned as a log-uniform prior distribution with
the bounds of 0.01 and 3.3 for all measurements as used in previous
models (Chiu et al., 2014; Chiu et al., 2009).

Given the distribution assumption listed above, the posterior para-
meters can be numerically evaluated. The Delayed Rejection Adaptive
Metropolis (DRAM) sampling was used to update parameters (Haario
et al., 2006). Four Markov chains of 500,000 iterations each, for the rat,
mouse, monkey and human models, respectively, were run with the
first 250,000 iterations as “burn-in” iterations (i.e. iterations for which
the simulation had not converged yet) and the last 50,000 iterations

Table 2
Values of the species-specific parameters after model calibration for the mouse, rat, monkey and human.

Parameters Symbol Mouse Rat Monkey Human

Body weight, (Kg)a BW 0.025 0.3 3.5 82.3
Cardia output, (L/h/kg0.75)b QCC 16.5 14 18.96 12.5
Fractional blood flows (% QC)b

Liver QLC 0.161 0.183 0.194 0.250
Kidney QKC 0.091 0.141 0.123 0.175

Fractional volumes (% BW)b

Liver VLC 0.055 0.035 0.026 0.026
Kidney VKC 0.017 0.0084 0.004 0.004
Plasma VPlasC 0.049 0.0312 0.0448 0.0428
Filtratec VfilC 0.0017 0.00084 0.0004 0.0004

Volume of PTCs, (L/g kidney)c VPTCC 1.35e-4 1.35e-4 1.35e-4 1.35e-4
Amount of proteins in PTCsd (mg/cell) Protein 2.0e-6 2.0e-6 2.0e-6 2.0e-6
Hematocrite Htc 0.48 0.46 0.42 0.44
Partition coefficientsf

Liver PL 7.65⁎ 3.66⁎ 3.72 2.03⁎

Kidney PK 0.8 0.8 0.8 1.26
Rest PRest 0.23⁎ 0.26⁎ 0.15⁎ 0.2

Free fraction of PFOS in plasmag Free 0.02⁎ 0.09 0.016⁎ 0.014⁎

Glomerular filtration rate constant, (L/h/kg of kidney)h GFRC 59 62.1 21.85 24.19
Gastric emptying rate constant, (/h/kg BW0.25)i GEC 0.54 0.54 2.34 3.51
Transporter ratesj

Vmax of basolateral (pmol/mg protein/min) Vmax_baso_invitro 393.45 393.45 439.2 479⁎

Km of basolateral (mg/L) Km_baso 27.2 27.2 20.1 20.1
Vmax of apical (pmol/mg protein/min) Vmax_apical_invitro 4185⁎ 1808⁎ 76972⁎ 51803⁎

Km of apical transporters (mg/L) Km_api 52.3 278⁎ 45.2⁎ 64.4⁎

Relative activity factorj

Apical transporters (unitless) RAF_api 2.81⁎ 1.90⁎ 0.0014⁎ 0.001⁎

Basolateral transporters (unitless) RAF_baso 3.99 4.15⁎ 1 1
Other rate constants (/h/kg BW0.25)j

Uptake from stomach to liver, K0C 1 1 1 1
Absorption from small intestines to liver KabsC 1.10⁎ 2.12 2.12 2.12
Unabsorbed dose to appear in feces KunabsC 7.05e-5 7.05e-5 7.05e-5 7.05e-5
Rate of efflux of PFOS from PTCs into blood KeffluxC 5.60⁎ 2.09⁎ 0.1 0.15⁎

Diffusion rate from PTCs Kdif 4.6e-5⁎ 5.1e-4⁎ 0.001 0.001
Biliary elimination rate KbileC 3.9e-4⁎ 0.0026⁎ 7.8e-4⁎ 1.3e-4⁎

Urinary elimination rate KurineC 1.60 1.60 0.092⁎ 0.096⁎

⁎ Calibrated values were fitted (the initiate values are provided in Table S1) with experiment data using the Levenberg-Marquardt algorithm.
a Use measured value if available, or collected from Brown et al. (1997) for rodents and monkeys and from ICRP (2002) for humans.
b The baseline value was obtained from Brown et al. (1997).
c The baseline value was assumed to be 10% kidney volume based on Worley and Fisher (2015) and Worley et al. (2017b).
d The baseline value was obtained from Addis et al. (1936) and Hsu et al. (2014).
e The baseline value was obtained from Hejtmancik et al. (2002) (mouse); Davies and Morris (1993) (Rat); Choi et al. (2016) (Monkey); ICRP (2002) (human).
f Loccisano et al. (2012) (mouse and rat) and Loccisano et al. (2011) (monkey); Fabrega et al. (2014) (human).
g The baseline values were obtained from Loccisano et al. (2012) (mouse and rat) and Loccisano et al. (2011) (monkey and human).
h Qi et al. (2004) (mouse), Corley et al. (2005) (rat and human), Iwama et al. (2014) (monkey).
i Yang et al. (2015) (mouse, rat and human), Fisher et al. (2011) (monkey).
j Initiate values were assumed to be equal to those of PFOA adopted from Worley and Fisher (2015) (rat and mouse) and Worley et al. (2017b) (human and

monkey), and then were re-estimated in the present model.
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were used as output iterations to check convergences.
All model simulations were conducted using R language (version

3.5.2, 2018; R Development Core Team, http://www.R-project.org).
The PBPK model was coded in R package “mrgsolve”. MCMC simula-
tions were performed in the R software package “FME”, which was
developed particularly for the non-linear model and MCMC simula-
tions. All model codes are open-source and available in the
Supplementary Materials and in GitHub (https://github.com/
KSUICCM/PFOS). Additionally, the model codes will be available on
our website (https://iccm.k-state.edu/) upon publication.

2.4. Estimation of posterior distributions

2.4.1. Convergence
Using the MCMC sampling algorithm, each chain should be in-

spected to verify that equilibrium has been achieved. The convergences
of the posterior parameter distributions sampled from the MCMC si-
mulation were diagnosed by the potential scale reduction factor (R)
(Gelman et al., 1996) and Brooks-Gelman multivariate shrink factor
(MPSRF). When each MCMC independent chain moves together and
towards to the common distribution, the R ratio is decreased to the
unity. A convergence diagnostic R value of 1.2 or less has been pro-
posed as a criterion of acceptable convergence (Gelman et al., 2004).

2.4.2. Comparisons of model predictions with calibration datasets
The posterior parameter distributions at population levels were used

to generate a global evaluation of model fit between log-transformed
values of observed and predicted plasma and tissue concentrations, and
the determination coefficient (R2) was calculated. The optimized pos-
terior parameters were used to predict PFOS concentrations, and then
to compare the predicted values with the experimentally observed va-
lues. The predicted-to-observed ratio for each calibrated and optimi-
zation dataset was used to estimate whether the model predictions
within an acceptable level of correspondence with the experimental
data. Based on the acceptance criteria from World Health Organization
(WHO) (WHO, 2010), estimated predicted-to-observed ratio within a
factor of 2 (i.e. the ratio is within<2 and> 0.5) indicates acceptable
prediction result.

2.4.3. Model evaluation: Validation and sensitivity analysis
The optimized model with the posterior parameters was used to

generate the population simulations of PFOS levels in plasma and other
organs and then the simulated results were compared with the in-
dependent datasets that have not been used in the model calibration or
optimization. The distributions of posterior parameters were computed
with 5000 parameters vectors drawn from every 10th vector of the final
50,000 MCMC runs. Time-course simulations of PFOS concentrations
were extracted for the median output with 95% confidence interval (CI)
of the population simulations, and the simulated results were compared
with the independent datasets in rats, monkeys and humans listed in
Table 1. A detailed description on different exposure paradigms for rats,
monkeys, and humans used in the model evaluation is provided in the
Supplementary Materials (Section 4: Model evaluation). Due to limited
mouse data, all available mouse data were used for model calibration
and optimization. Thus, there were no independent mouse data for
model evaluation.

A local sensitivity analysis was performed to determine which
posterior parameters were most influential on the area under the curve
(AUC) of plasma, liver and kidney concentrations of PFOS in the mouse
(single oral dose to 1mg/kg/day), rat (daily dosing to 1mg/kg/day for
98 days) (Seacat et al., 2003), monkey (daily dosing to 0.75mg/kg/day
for 182 days) (Seacat et al., 2002) and human (daily dosing to 4.5 ng/
kg/day for 25 years) (Haug et al., 2009). Each of the posterior para-
meters was increased by 1%, and the corresponding AUCs of PFOS
concentrations were computed. Normalized sensitivity coefficient
(NSC) was calculated using Eq. (S13) (Lin et al., 2011; Mirfazaelian

et al., 2006) provided in Supplementary Materials. The relative influ-
ence of each parameter on the response variables was categorized as:
low: |NSC| < 20%; medium: 20%≤ |NSC| < 50%; high:
50%≤ |NSC| (Lin et al., 2013; Yoon et al., 2009).

2.5. Model application to predict the human equivalent dose (HED)

The validated PBPK model was used to simulate the exposure of rats
and monkeys to reported no-observed-adverse-effect-level (NOAEL) of
0.34 and 0.15mg/kg/day, respectively (EPA, 2016b). These NOAEL
values were obtained from the studies by Seacat et al. (2003; 2002),
where histopathological lesions of the liver, increased liver weight and
other critical toxicity endpoints related to liver were observed in rats
(1.33–1.56mg/kg/day after 14 weeks) and monkey (0.75mg/kg/day
after 26 weeks). In line with our model design, only NOAEL values
derived from male rat and monkey data (Seacat et al., 2003; Seacat
et al., 2002) were selected as the point of departure (POD) to derive the
human equivalent dose (HED) for PFOS using the present PBPK model
and then compare to the published HED values by U.S. EPA (EPA,
2016b). To calculate HED, we firstly predicted the plasma AUC at the
NOAEL exposure levels for the monkey, rat and human. Because of the
consideration of liver toxicity, the HED value based on the liver dose-
metric was also estimated. The AUC values were calculated using the
PBPK model for the duration of exposure in the selected rat and monkey
critical studies or for 25 years until steady state had been achieved in
humans. Subsequently, the average serum concentration (ASC) and
average liver concentration (ALC) was estimated using the equation
(i.e., ASC or ALC [mg/L]=AUC [mg ∗ h/L]/(Exposure duration
[days] ∗ 24 h/1 day)) based on U.S. EPA report (EPA, 2016b). Next,
HED was calculated using NOAEL multiplied by the ratio of ASC or ALC
between animals and humans (e.g., ASCanimal/ASChuman) (Andersen
et al., 2002; Andersen et al., 1999; Cheng et al., 2018; EFSA, 2015; Lin
et al., 2016). Based on each posterior parameter combination, the
median and the 95% confidence interval (CI) for ASC, ALC, and HED
values were estimated and compared with the reported HED values
from U.S. EPA (EPA, 2016b).

3. Results

3.1. Convergence analysis

Figs. S1–S8 (Supplementary Materials) showed the well-mixed
Markov chains trace plots, suggesting well convergences among chains
for each species. Corrected Scale Reduction Factors (R) were calculated
for the four chains based on the method of Brooks and Gelman (Brooks
and Roberts, 1998). All the R values for population parameters in four
species were below 1.2, indicating convergences; and the ranges of the
R values were 1.0–1.01 in mice, 1.0–1.02 in rats, 1.0–1.04 in monkeys
and 1.0–1.02 in humans (Figs. S1–S8). The diagnosed values of the
convergences for Markov chains indicate the equilibrium posterior
parameter distribution was achieved for subsequent population and
individual simulations.

3.2. Estimation of posterior parameter distributions between species

The prior and posterior distributions of the median with 95% CI for
the estimated parameters were shown in Table 3. The posterior dis-
tribution of population mean (μ) was estimated from the updated the
central value (M) and standard deviation (S) using the MCMC simula-
tion. The medians of posterior distributions for most parameters were
close to prior estimates (defined by±20% from the prior estimates)
(Yang et al., 2010b), but most of the 95% CIs of posterior distributions
were substantially narrower than prior distributions (i.e. less un-
certainty). In the Fig. 3, the posterior parameter uncertainty distribu-
tions were compared across species. Variabilities of parameter dis-
tributions between species for KeffluxC, KurineC, RAFapi and
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Vmax_apical_invitro were apparent. In particular, the values of these
parameters in the human and monkey were significantly different from
those for rodents. Parameters that had similar posterior distributions
between species included partition coefficients (PL and PK), the Mi-
chaelis-Menten parameters for basolateral membrane transporters
(Vmax_baso_invitro, Km_baso), and some rate constants (K0C, KabsC,
Kdif).

3.3. Comparisons of model predictions with experimental data

3.3.1. Global evaluation of model fit
A global evaluation of the goodness of fit between model predictions

and experimental data across species is shown in Fig. 4A. The dis-
tributions of the predicted-to-observed ratio for each of the experi-
mental data point are illustrated in Fig. 4B. Overall, the model pre-
dictions correlated with the majority of the experimentally measured
data very well (high goodness of fit, R2= 0.96) (Fig. 4A). This model,
however, underestimated some data points in the mouse and monkey
datasets from Chang et al. (2012) at low dose levels with the predicted-
to-observed ratio lower than 0.5 (Fig. 4B). The histogram in Fig. 4B
showed that most of the predicted values were within the predicted-to-
observed ratio of 2, which meets the WHO model precision criteria
(WHO, 2010). All comparisons of predicted time-dependent PFOS
concentration profiles with calibration and optimization data of the
mouse, rat, monkey and human are shown in Supplemental Materials
(Figs. S9–S12).

3.3.2. Model evaluation with independent datasets
Comparisons of measured vs. model-predicted ranges (median, in-

terquartile and 95% CI) of PFOS concentrations in the plasma and tis-
sues in rats, monkeys, and humans are shown in Fig. 5. For the human
model, the model predictions (Fig. 5A1–A3) were compared with the
measured PFOS concentrations in plasma (Fig. 5A1) from Red Cross
adult donors in six cities around the U.S. in 2000–2001 (Olsen et al.,
2003a) and 2006 (Olsen et al., 2008), and the exposure of 0.0045 μg/
kg/day before 2000 (simulation time from 0 to 50 years in the plot;
assumed that exposure from the 1950s to 2000) and 0.0018 μg/kg/day
from 2001 to 2006 (simulation time from 51 to 56 years in the plot)
were used in this model based on the previously reported estimated
human exposures (Loccisano et al., 2011). The liver PFOS concentra-
tions (Fig. 5A2) were collected from International Institute for the
Advancement of Medicine (Olsen et al., 2003b), and only the male data
(n=16, age range 5–74) were considered in this model. The predicted
PFOS values in plasma (Fig. 5A1) and liver (Fig. 5A2) was shown to be
close to the observed values. In addition, in Fig. 5A3, the simulation
results were compared with the measured PFOS concentrations in
plasma, liver and kidney from an autopsy (Fabrega et al., 2014). The
model-predicted steady-state concentrations of PFOS in plasma, liver,
and kidney agreed with the measured concentrations in humans except
for the kidney. The reasons for the underestimation of the PFOS con-
centrations in the kidney from the study by Fabrega et al. (2014) are
unknown, but it could be due to the high uncertainty and variability of
the human data, especially for different human subpopulations with
different demographic, exposure, and toxicokinetic properties.

For the rat model, the experimental data were from a dietary ex-
posure study where rats were exposed to 0.5 (0.03 mg/kg/day), 2
(0.13 mg/kg/day), 5 (0.34 mg/kg/day), or 20 (1.33mg/kg/day) ppm of
PFOS for 4 and 14 weeks, and PFOS levels in plasma and liver were
determined after treatment (Seacat et al., 2003). Fig. 5B1–B2 showed
the comparisons of model predictions and measured PFOS concentra-
tions in plasma (Fig. 5B1) and liver (Fig. 5B2) on the days of 28 and 98
of the 1.33mg/kg/day dietary exposure study. The model somewhat
overestimated the plasma (Fig. 5B1) PFOS concentrations on day 28,
but well predicted PFOS concentrations at the end of day 98 in plasma
and liver. The model-predicted ranges of PFOS concentrations in
plasma and liver well corresponded to the observed data at all doseTa
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levels (Fig. 5B3).
For the monkey model, comparisons of model-predicted vs. mea-

sured PFOS concentrations in liver resulting from an oral dose of 0.03,
0.15, and 0.75mg/kg daily to monkeys (Seacat et al., 2002) are shown
in Fig. 5C1–C2. The predicted time-course PFOS concentrations were
slightly higher than the measured PFOS concentrations in liver
(Fig. 5C1) at 0.75mg/kg and other dose groups (Fig. 5C2) at the end of
day 182. Overall, the present model was able to simulate the majority of
available independent data with acceptable accuracies, indicating
model validation across rats, monkeys, and humans.

3.4. Posterior parameter sensitivity

A local sensitivity analysis was carried out for a total of 68 posterior
parameters based on the PBPK model for the mouse, rat, monkey, and
human, respectively. Results of the local sensitivity analysis based on
1% variation of the posterior parameter values in the simulation of
plasma, liver and kidney are shown in Fig. 6. The results indicate that
there appears to be a species-specific difference in model sensitivity to
parameters. Serum PFOS is primarily dependent on the parameters
Free, PL and KbileC in the mouse and rat. In the monkey and human,
besides Free, PL and KbileC, serum PFOS AUC is also governed by the

parameters related to membrane transporters such as Vmax_apical,
Km_apical, RAFapi, RAFbaso (Fig. 6A). Moreover, there was a significant
tissue-specific difference in parameter sensitivity (Fig. 6A–C). In hu-
mans, the AUC of the plasma and liver are highly sensitive to Free, PL
and the parameters related to apical transporters (Vmax_apical_invitro,
Km_apical), whereas the parameters related to basolateral transporters
(Vmax_baso_invitro, Km_baso, RAFbaso) had the highest sensitivity on
the AUC of kidney.

3.5. Model application to predict the human equivalent doses (HEDs)

The result of the comparison of the HED values from the current US
EPA document (EPA, 2016b) with those HED values resulting from the
use of our PBPK model is shown in Table 4. The estimated ASC ranged
from 0.015 to 1.30 (median: 0.56) μg/mL and from 0.034 to 2.77
(median: 0.46) μg/mL on the basis of the NOAEL in monkey (Seacat
et al., 2002) and rat studies (Seacat et al., 2003), respectively, which
were about 68-fold and 36-fold lower than the U.S. EPA guideline va-
lues of ASC for monkeys and rats, respectively. The estimated ALC
ranged from 80 to 288 μg/mL and 33 to 125 μg/mL resulting from
monkey and rat studies, respectively. The PBPK model-derived plasma
dosimetry-based HED levels was 0.0055 (95% CI: 0.0001–0.14) and

Fig. 3. Densities of posterior parameter uncertainty distributions in the mouse (blue color), rat (pink color), monkey (grey color), and human (white color) of the
population mean (μ). The x-axis represents the log-transformed value of each parameter. The y-axis represents the densities of the posterior parameter uncertainty
distributions. Please refer to Table 2 for definitions of parameters. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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0.0057 (95% CI: 0.0002–0.17) mg/kg/day based on the ASC from the
monkey and rat studies, respectively; while the liver dosimetry-derived
HED values were 0.012 (95% CI: 0.004–0.22) and 0.004
(0.0013–0.072) mg/kg/day, respectively.

4. Discussion

Risk assessment of PFOS is challenging due to its large variation in
toxicokinetics between species and a lack of a robust PBPK model to
take account toxicokinetic uncertainty across species (ATSDR, 2018;
Dong et al., 2017; EPA, 2016b). In the present study, built upon earlier
PBPK models for PFOS and PFOA, we developed a robust PBPK model
for PFOS in multiple species, including mice, rats, monkeys, and hu-
mans. The model parameters were rigorously optimized with Bayesian
analysis through MCMC simulation and the model was validated with
independent data in rats, monkeys, and humans. This model greatly
improves the understanding of the interspecies uncertainty/variations
of toxicokinetic parameters for PFOS. The model could be used to de-
rive HED based on NOAEL from animal toxicity studies. This multiple
species-specific PBPK models with optimized parameters can poten-
tially improve quantitative risk assessment for PFOS, and this open-
source model serves as a foundation for developing PBPK models for
other perfluoroalkyl substances.

4.1. Optimization, uncertainty, and variability of model parameters across
species

The present PFOS PBPK model used a consistent model structure
across multiple species and incorporated the Bayesian approach
through MCMC simulation to optimize the parameter values and inform
the interspecies uncertainty and variability of model parameters. In the
optimization of model parameters, several transporter parameters that
were originally obtained from human or rat cells (e.g.,
Vmax_apical_invitro, Km_apical, etc.) were refitted with available in
vivo datasets. Despite that the posterior parameter values had a
variability of 2 orders of magnitude, the median values were consistent
with the baseline values observed from in vitro studies. For example,
the median values of posterior distributions for Vmax_apical_invitro and
Km_apical in humans were estimated to be 26,000 (pmol/mg protein/
min) and 42 (mg/L), which are close (within 10×) to the average

values of Vmax (2233, unit: pmol/mg protein/min) and Km (17.2, unit:
mg/L) obtained from human transporters: OATP1B1, OATP1B3, and
OATP2B1 in human kidney cells (HEK293) (Zhao et al., 2017). Simi-
larly, the values of Vmax (1840, unit: pmol/mg protein/min) and Km
(46, unit: mg/L) for rat transporters: OATP1A1 and OATP1A5 (Zhao
et al., 2017) were consistent with our posterior values of Vmax_-
apical_invitro (1100, unit: pmol/mg protein/min) and Km_apical (122,
unit: mg/L).

The interspecies variability was evident in the analysis of posterior
parameter distributions between species (Fig. 3). Our results indicate
that the posterior distributions of most chemical-specific parameters are
similar between species, but apparent interspecies differences exist for
the following parameters, including the urinary elimination rate con-
stant (KurineC), resorption rate constant from PTCs into systemic cir-
culation (Kefflux), and parameters related to apical membrane trans-
porters (Vmax_apical_invitro and RAFapi). In particular, a 100-fold
difference of posterior point estimate between the rodent and primate
for KurineC has been observed, which, in part, explains the fact that the
half-life in humans is much longer than in rodents (Chang et al., 2012;
Olsen et al., 2008). Additionally, the finding that the posterior dis-
tributions of the renal apical membrane transporter rate and its activity
factor (Vmax_apical_invitro and RAF_api) in primates are substantially
different from those in rodents is consistent with the previous in vitro
studies (El-Sheikh et al., 2008; Hilgendorf et al., 2007), indicating that
the expression and/or activity of apical membrane transporter proteins
that mediate active tubular reabsorption of PFOA and PFOS are species-
specific.

Furthermore, our results suggest that the parameter simulating the
process of pumping PFOS from PTCs back into the systemic circulation
via the efflux pathway (Kefflux) might play a critical role in the var-
iation of the elimination kinetics between species as the posterior dis-
tributions of Kefflux were significantly different between rodents and
primates, which supports the hypothesis proposed by a recent study
(Yang et al., 2010a) that the efflux transporters (e.g., multidrug re-
sistance-associated protein 6 and organic solute transport α/β) might
assist in moving intracellular perfluorocarboxylates back to the sys-
temic circulation to extend the serum half-life. Future studies are
needed to determine the specific and quantitative role of these trans-
porters in the half-life of PFOS in different species.

Fig. 4. Comparisons of model predictions (y-axis) with observed data (x-axis) with (A) global evaluation of goodness of model fit and (B) predicted-to-observed ratio
versus model prediction plot. In plot (A), the different symbol shapes are used for different species, including the mouse (square), rat (cross), monkey (triangle) and
human (round). The solid black diagonal line represents the unity line where the observed value and the predicted value are equal. In plot (B), the dashed line
represents over a predicted-to-observed ratio of 2 or lower 0.5, and the blue line is the smoothed high order polynomial curve. The histogram of residuals is shown on
the right of the panel. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.2. Sensitivity analysis of posterior parameters

The sensitivity analysis results suggest that the free fraction (Free),
biliary elimination rate constant (KbileC) and partition coefficient of
liver (PL) had high influence on the model predictions of the plasma
and target tissue concentrations in rodents, whereas in monkeys and
humans, besides Free, KbileC, and PL, the membrane transporters-re-
lated parameters (Vmax_baso_invitro, Vmax_apical_invitro, RAF_api,
etc.) were also highly sensitive in the model simulations. These results
support the findings of earlier studies (Andersen et al., 2006; Loccisano
et al., 2011) that the membrane transporters in kidney may play an
important role in the disposition of PFOS as they mediate the excretion
and reabsorption of xenobiotics in monkeys and humans, and thus
strongly contribute to the predicted PFOS concentrations in plasma and
target organs. A recent study (Fabrega et al., 2016) also reported that
the free fraction and transport parameters (Tm: resorption maximum
and Kt: affinity constant) were the most influential parameters based on

the sensitivity analysis results, which are consistent with our findings.
Moreover, the finding that the model predictions were sensitive to the
values of partition coefficient of liver in rodents was not surprising as it
has been shown that PFOS distributes preferentially to the liver in ro-
dents compared with primates (Bogdanska et al., 2011).

4.3. Dosimetry and risk assessment

One of the biggest challenges in risk assessment for PFOS is the
derivation of acceptable exposure levels from critical studies in animals
to humans. Due to the large interspecies variation in toxicokinetics
between species, similar external PFOS dosages (i.e., mg/kg/days) in
animals may result in substantially different internal dosimetry in hu-
mans. In addition, there are physiological and biochemical differences
among mice, rats, monkeys, and humans that have to be accounted for
when conducting interspecies extrapolation. Non-biologically-based
parameters from the compartmental TK model were not suitable to

Fig. 5. Comparisons of model simulations and experimental data (mean ± SD) from studies in (A1–A3) humans, (B1–B3) rats and (C1–C2) monkeys following
dietary exposure. For the human data, the serum PFOS concentrations (A1) were measured in the general population in 2000–2001 (simulation time at 50 years)
(Olsen et al., 2003a) and in 2003–2006 (simulation time at 55 years) (Olsen et al., 2008), and the (A2) liver PFOS concentrations were obtained from adult donors
(Olsen et al., 2003b). The PFOS concentration data in A3 were obtained from the postmortem samples in an autopsy (Fabrega et al., 2014). A more detailed
description on the human exposure paradigms used in the model evaluation is available in the Supplementary Materials. In the rat study (Seacat et al., 2003), serum
(B1) and liver (B2) PFOS concentrations were measured at the end of 28 and/or 98 days of oral exposure at different dose levels (0.03–1.33mg/kg/day). In the
monkey study (Seacat et al., 2002), the PFOS concentrations in liver were measured at the end of 182 days of dietary exposure to (C1) 0.75 mg/kg/day and (C2) all
dose groups (0.03, 0.15 and 0.75 mg/kg/day). The light and dark color represent the interquartile range (25% - 75%) and 95% confidence interval (CI), respectively.
The points with error indicate the mean (± SD) of PFOS concentrations in the serum and other target organs. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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describe toxicokinetic behaviors of PFOS across species. For example,
the three-compartment TK model incorporating the MCMC simulation
(Wambaugh et al., 2013) has been used by U.S. EPA to derive the RfD of
PFOS. Despite the model in Wambaugh et al. provides insight into the
risk assessment of PFOS (EPA, 2016b), there is still substantial un-
certainty of model parameters across species as the model is not phy-
siologically based and the model parameters are not biologically
plausible (Dong et al., 2017).

The multiple-species PBPK model reported herein was established
based on the available knowledge on the mechanisms of pharmacoki-
netics of PFOS and by considering the model structures of available
PBPK models for PFOS and PFOA so that the current model is physio-
logically relevant and comparable to existing models for PFOS and
PFOA. Also, the same physiologically-based model structure was cali-
brated with data from all four species, so that the model can be used to
conduct interspecies extrapolation. With the use of Bayesian analysis
and MCMC simulation in the estimation of posterior parameter dis-
tribution, the uncertainty has been significantly reduced from prior
parameter distributions.

A report of Food Standards Australia New Zealand (FSANZ) (FSANZ,
2016) has pointed out that the serum concentration of PFOS predicted
by the PK model used in U.S. EPA guidance appears to rapidly reach the
steady-state despite the long half-life. This might affect the calculation
of AUC and overestimate the value. Indeed, the estimated ASC levels
derived by our PBPK model based on the general acceptable AUC
method were ~50-fold lower than the U.S. EPA guideline values of ASC.
However, a data-driven human clearance (0.000081 L/kg/d) was ap-
plied for the derivation of HED by U.S. EPA, resulting in the con-
servative guidance values of HED (0.0013–0.0031mg/kg/day). It is
very close to the estimated median values of HED (0.0055–0.0057mg/
kg/day) resulting from the ASC-derived AUC from our PBPK model
based on the NOAEL of monkey (Seacat et al., 2002) and rat (Seacat
et al., 2003) studies (EPA, 2016b) (Table 4). Using the estimated 5th
percentile of ASC-derived HED values resulting from the NOAEL of
monkey and rat studies as PODs and the uncertainty factor of 30 (a
factor of 10 to account for the intraspecies variability and a factor of 3
to account for interspecies variability in pharmacodynamics), the esti-
mated RfD values ranged from 3 ng/kg/day to 6 ng/kg/day. The RfDs
resulting our PBPK model are lower than those currently recommended

by the U.S. EPA (20 ng/kg/day) for developmental endpoint (Luebker
et al., 2005), but are closed to the health-based guidance value of
European Food Safety Authority (EFSA, tolerable daily intake of 1.8 ng/
kg/day) derived from human studies based on the serum cholesterol
endpoint (EFSA, 2018).

Currently, the mode of action (MOA) of PFOS-induced toxicity is not
fully understood, but a growing number of studies in animals have
linked PFOS exposure to liver toxicity (e.g., increased liver weight and
hepatocellular hypertrophy, decreases in serum cholesterol and trigly-
ceride levels) (Elcombe et al., 2012a; Elcombe et al., 2012b; Seacat
et al., 2003; Seacat et al., 2002) and developmental effects (Butenhoff
et al., 2009; Lau et al., 2003; Luebker et al., 2005; Thibodeaux et al.,
2003). The leading hypothesis of PFOS-induced liver toxicity is that
PFOS may interfere with mitochondrial beta-oxidation of fatty acids
and subsequently affect the transcriptional activity of peroxisome pro-
liferator-activated receptor alpha (PPARa) in liver (Martin et al., 2007;
Wan et al., 2012; Wang et al., 2014). The peroxisome proliferation via
activation of PPARα might be a major contributing factor to the effects
of PFOS on the liver and some of the developmental effects (ATSDR,
2018).

In the U.S. EPA guidance (EPA, 2016b), the HEDs estimated from
the average serum concentrations based on the liver (Seacat et al.,
2003) and developmental toxicity (Butenhoff et al., 2009; Lau et al.,
2003; Luebker et al., 2005) endpoints were as the potential basis for the
derivation of RfD. However, based upon a consideration of the MOA,
the liver toxicity or developmental effects are better explained by the
internal dosimetry in target organs (e.g., liver and fetal organs). In this
study, the estimation of median HED values resulting from the PBPK-
predicted liver AUC was similar to that resulting from the predicted of
serum AUC based on the liver toxicity endpoint (e.g., 0.0057 vs.
0.004mg/kg/day based on the rat study). Thus, it appears that the HED
derived from the serum AUC is an acceptable surrogate for the target
organ dosimetry for PFOS risk assessment. Although the derivation of
RfDs could vary depending on the selection of internal dosimetric in the
target organs (e.g., serum or liver) and the application of uncertainty
factors to data from animal or human studies, the estimated RfDs de-
rived from our model that is linked to the likely MOA (liver toxicity
endpoint) potentially provides a more physiologically relevant re-
ference value for risk assessment of PFOS.

Fig. 6. Normalized sensitivity coefficients (NSCs) of posterior parameters using AUCs for concentrations of PFOS in (A) plasma, (B) liver, and (C) kidney in the mouse
(single oral dose to 1mg/kg/day), rat (daily dosing to 1mg/kg/day for 98 days), monkey (daily dosing to 0.75mg/kg/day for 182 days) and human (daily dosing to
4.5 ng/kg/day for 25 years). Only parameters with at least one absolute value of NSC > 1% are shown on the plots. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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4.4. Limitations

The present study has several limitations. First, due to the limited
human data, we used the pooled serum data from a general Norwegian
population for the human model calibration (Haug et al., 2009). Al-
though the human model has been validated using data from other
general populations (Olsen et al., 2003a; Olsen et al., 2003b; Olsen
et al., 2008) and human autopsy data (Fabrega et al., 2014), the fact
that all human datasets had unknown exposure conditions present a
challenge in the assessment of model fit. While the exposure conditions
were estimated based on available knowledge from the literature, ad-
ditional human studies with known PFOS exposure conditions, once
available, could be used to improve the present human model. Second,
unlike the Bayesian PBPK model for trichloroethylene (Chiu and
Ginsberg, 2011; Chiu et al., 2009), our model fixed the physiological
parameters during the MCMC optimization. This approach is beneficial
in terms of reducing computational burden and improving the perfor-
mance in the Bayesian analysis, and this is an acceptable Bayesian-
based PBPK optimization method (Hack et al., 2006). The variations of
physiological parameters for each species can also be incorporated into
the model to generate population simulation results that may be more
reflective of the population variability (Li et al., 2017a). Third, the
enterohepatic circulation of PFOS is not described in the present model
due to limited information about the relevant parameters. In our model
structure, the biliary flow from the liver was assumed to enter directly
into the feces rather than return into the small intestine for potential
enterohepatic circulationin in order to simplify the model and minimize
the uncertainty based on earlier PBPK models for PFOA and PFOS
(Loccisano et al., 2012; Worley and Fisher, 2015; Worley et al., 2017a,
2017b). However, recent studies have shown that PFOS can bind to
liver transporter proteins which may play an important role in en-
terohepatic circulation (Zhao et al., 2015; Zhao et al., 2017). Also, there
are structurally more complex PBPK models for PFOS available in the
literature (Loccisano et al., 2011; Fabrega et al., 2014; Fabrega et al.,
2016). Once the potential enterohepatic circulation of PFOS has been
fully characterized and once additional relevant data are available, the
present model can be further improved. Finally, the present model is
only for adult animals and humans. Additional studies are needed to
extend the model to other life stages, particularly in gestational and
lactational periods.

5. Conclusions

In conclusion, the present study developed a comprehensive PBPK
model for PFOS in multiple species, including mice, rats, monkeys, and
humans. By integrating Bayesian analysis and MCMC algorithm, the
uncertainty of model parameters across species was well characterized.
The results indicate the efflux transporters in the kidney PTCs may play
an important role in the elimination kinetic differences of PFOS be-
tween species, which requires experimentation to verify. The present
PBPK model can be used to estimate HED and RfD values to support the
risk assessment of PFOS. The present model-derived conservative RfD is
similar to the guidance value reported by EFSA, but are ~3–6 fold
lower than the values recommended by U.S. EPA. Overall, the present
model may improve the risk assessment of PFOS, and the open-source
code provides a foundation for developing PBPK models for other
perfluoroalkyl substances. Additional studies are needed to further
improve this model and extend it to other life stages.
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Appendix A. Supplementary data

Supplementary Materials include: (1) detailed explanation on the
model equations and codes; (2) additional methods on model calibra-
tion, estimation of posterior parameters, and model evaluation; (3)
supplementary results including supplementary Tables S1–S3 and Figs.
S1–S12; (4) all PBPK model codes in mice, rats, monkeys, and humans,
including codes used to generate results presented in Figs. 3–6, Figs.
S1–S12, and Tables 3–4; (5) all raw experimental data used in the
model calibration and optimization; (6) all raw model-derived simula-
tion data used in the creations of all tables and figures presented in this
manuscript, and (7) instructions on how to use the present model.
Supplementary Materials to this article can be found online at the
journal's website. Supplementary data to this article can be found on-
line at https://doi.org/10.1016/j.envint.2019.03.058.
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