SUPPLEMENTARY MATERIALS

Integration of Food Animal Residue Avoidance Databank (FARAD) empirical methods for drug

withdrawal interval determination with a mechanistic population-based interactive

physiologically based pharmacokinetic (iPBPK) modeling platform: example for flunixin

meglumine administration

Miao Li¹, Yi-Hsien Cheng¹, Jason T. Chittenden², Ronald E. Baynes², Lisa A. Tell³, Jennifer L. Davis⁴, Thomas W. Vickroy⁵, Jim E. Riviere^{1,2}, and Zhoumeng Lin^{1,*}

¹Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506;

²Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606;

³Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616;

⁴Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24060;

⁵Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610.

Miao Li: miaoli@ksu.edu; Yi-Hsien Cheng: yhcheng1987@ksu.edu;

Jason T. Chittenden: jchittenden1010@outlook.com;

Ronald E. Baynes: Ronald_Baynes@ncsu.edu; Lisa A. Tell: latell@ucdavis.edu

Jennifer L. Davis: jdavis4@vt.edu; Thomas W. Vickroy: vickroy@ufl.edu;

Jim E. Riviere: jriviere@ksu.edu; Zhoumeng Lin: zhoumeng@ksu.edu

*To whom correspondence should be addressed: <u>zhoumeng@ksu.edu</u>; Phone: +1-785-532-4087; Fax: +1-785-532-4953; Address: 1800 Denison Avenue, P200 Mosier Hall, Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, United States.

Table of Contents

Supplementary Method and Result	3
Tutorial for iPBPK Interface	9
Sample Output for iPBPK Interface	17
Supplementary Figures	
Fig. S1	
Fig. S2	19
Fig. S3	20
Fig. S4	21
Fig. S5	22
Fig. S6	23
Supplementary Tables	24
Table S1	24
Table S2	25
Table S3	27
Table S4	29
Table S5	
Table S6	
Table S7	
Table S8	
Additional Files and Instructions	
Model Codes	
Average PBPK Model for Flunixin in Cattle using Berkeley Madonna	
Population PBPK Model for Flunixin in Cattle using Berkeley Madonna	45
References	55

Supplementary Method and Result

Model parameterization and calibration

The physiological parameters related to beef cattle and swine were obtained from previous experimental studies and published PBPK models [1-4]. The values of physicochemical parameters of flunixin and 5-OH flunixin, such as the molecular weight, octanol to water partition coefficients (logP), and acid dissociation constant (pKa), were acquired from PubChem and ChemSpider (Table S6). The values for tissue to plasma partition coefficients of flunixin and 5-OH flunixin used in the swine and cattle model were first estimated with different methods, including modules in PKsim, GastroPlus and Simcyp, and the well-accepted Rodgers and Rowland method [5] based on the tissue compositions of rats and swine [6]. The predicted values of tissue to plasma partition coefficients from commercial software are based on total chemical concentrations in plasma, while Rodgers and Rowland method uses unbound chemical concentrations in plasma. Taking into account plasma protein binding of flunixin [7,8], the values derived from commercial software can be converted to the values from Rodgers Rowland method by dividing the free drug ratio of flunixin (1%) in plasma. After converting all the predicted values of tissue to plasma partition coefficients to the ones based on unbound chemical concentrations in plasma, the results from these four methods are very similar (Table S7). The slight differences between these values from commercial software may be caused by different values of tissue components used. Due to the fact that tissue components were not well reported for swine and cattle, the predicted tissue to plasma partition coefficients may not be estimated correctly. Specifically, the active transporter-mediated drug distribution was not considered in the algorithm. These predicted values based on unbound chemical concentrations in plasma were used as initial estimates to further optimize partition coefficients by fitting to the selected

3

pharmacokinetic data (**Table 1**) using the Curve Fitting module in Berkeley Madonna (Version 8.3.23.0; University of California at Berkeley, CA, USA), and the final optimized values are provided in **Table 2** for cattle and swine.

Berkeley Madonna was used to develop the PBPK model and run all simulations. The model in Berkeley Madonna was also translated to R (version 3.5.0) using a published method [9] and all simulations were repeated in R. The model codes in Berkeley Madonna are provided in the Supplementary Materials and will be available at our center's website (<u>http://iccm.k-state.edu/</u>) upon publication. Since the model was constructed based on previous PBPK models, only key and new mathematical equations are described in detail in following paragraphs. For all the other equations, readers are directed to earlier publications for detailed explanations [3,10,11].

As the 5-OH flunixin metabolite submodel was included in the PBPK model, the input dose amount of flunixin was converted from milligrams into millimoles by dividing the molecular weight of flunixin. The 5-OH flunixin can be further metabolized to glucuronide conjugates [12], the conjugates can be hydrolyzed to free flunixin by enzymes [13] or under mild alkaline conditions [14]. The enterohepatic circulation of flunixin was simulated as a first-order kinetic process with the following equations:

$$Rehc = Kehc \times AI \tag{1}$$

$$RL = QL \times (CA free - CVL) - Rmet - Rbile + Rehc$$
 (2)

$$RAI = Rbile + Rbile1 - Kint \times AI - Rehc$$
(3)

where Rehc is the rate of flunixin reabsorbed through the enterohepatic circulation (mmol/h); Kehc is the rate constant of flunixin reabsorbed through the enterohepatic circulation (/h); AI is the amount of flunixin in the intestine (mmol); RL is the rate of change in the concentration of flunixin in the liver (mmol/h); QL represents the volume of blood flow to the liver per hour (L/h); CAfree is the arterial blood concentration of flunixin not bound with plasma proteins (mmol/L); CVL is the concentration of flunixin in the liver venous blood (mmol/L); Rmet is the rate for the metabolism of flunixin into 5-OH flunixin (mmol/h); Rbile is the rate for flunixin excreted through bile (mmol/h); RAI is the rate of change for the amount of flunixin in intestine (mmol/h); Rbile1 is the rate for 5-OH flunixin excreted through bile (mmol/h), which can be hydrolyzed to free flunixin in the intestine [15]; Kint is the rate constant of flunixin absorbed from intestine (/h).

By using the modules of "Curve Fitting" and "Parameter Slider" in Berkeley Madonna, the enterohepatic circulation (KehcC) and biliary (KbileC) and urinary eliminations (KurineC) of flunixin were optimized by fitting the model prediction to the pharmacokinetic data from the FDA Freedom of Information for NADA 101-479 [16] and the study carried out by Odensvik and Johansson [17] for the cattle model. The rate constants of flunixin metabolism (KmetC), enterohepatic circulation (KehcC) and biliary (KbileC) and urinary eliminations (KurineC) of 5-OH flunixin in the cattle model were optimized by fitting with the data from the study by Shelver et al. [18], and the values of parameters related to IM (Kim) and SC (Ksc) administrations were fitted with pharmacokinetic data from IM [19] and SC administrations [18], respectively. For the swine model, the enterohepatic circulation (KehcC) and biliary (KbileC) and urinary eliminations (KurineC) of flunixin and 5-OH flunixin were optimized by fitting the pharmacokinetic data from the studies carried out by Howard et al. [20] and Pairis-Garcia et al. [21], and the absorption rate constant of IM administration was fitted with data from the study carried out by Pairis-Garcia et al. [21] and FDA Freedom of Information for NADA 101-479 [22]. The values of all physiological parameters and chemical-specific parameters used in the PBPK model for beef cattle and swine are shown in **Table 2**.

<u>Translation of the PBPK Model into a User-Friendly iPBPK Interface (also called</u> Extralabel Withdrawal Interval Simulator)

The PBPK model code in Berkeley Madonna format was converted into R. The "mrgsolve" package was chosen for coding the user-friendly iPBPK interface. The iPBPK interface was constructed with the "Shiny" package based on the R model code. In brief, the interface includes the following tabs on the left side, including "Main Plot", "Model Parameters", "Output Table", "Model Structure", "Code", "Tutorial", "Output Report", and "About". The "Main Plot" tab allows users to select the simulation scenario, including the drug (i.e., flunixin or other drugs to be included), species (i.e., swine, beef cattle, or others to be included), administration route, dose level, dose interval, number of administrations, number of animals in the Monte Carlo simulation, and terminal simulation time (i.e., simulation time after last administration). Once the simulation scenario is selected, click "Apply Changes", and then the simulation results will be displayed on this page. For advanced users, the "Model Parameters" tab provides the option to customize the physiological and chemical-specific parameters for a specific model simulation for a specific animal production class. On this page, users can also see the simulated concentrations of the drug in individual edible tissues. Once the simulation is done, the results can be downloaded as an Excel file through the "Output Table" tab for reanalysis or replotting. The simulation results can also be downloaded as a standard report in a PDF, Word, or HTML format. This report includes a summary of inputs for the simulation parameters, general information about the label use and label withdrawal period for the drug, and the predicted WDIs based on the simulation, as well as a plot showing the range of the simulated concentrations of

6

the drug in the target tissue from the selected population of animals. Finally, a very detailed tutorial illustrating how to use this interface step-by-step is provided and can be downloaded from the "Tutorial" tap. This "Tutorial" is also proved in this Supplementary Materials below.

Sensitivity Analysis

The sensitivity analysis was applied to screen the sensitive parameters in the PBPK model. Thirty-two model parameters in the PBPK model for beef cattle and swine were analyzed using the method of local sensitivity analysis based on 1% variation of the parameter values (**Table S8 and Fig. S6**). Only parameters with at least one absolute value of NSC greater than 0.20 are shown in the table. For physiological parameters, the body weight (BW), the cardiac output (QCC), the tissue volume of liver (VLC) and the blood flow to liver (QLC) were the relatively sensitive parameters for the model. The AUC of 5-OH flunixin in plasma was highly sensitive to the kidney partition coefficient (PK) and protein binding in plasma (PB) for flunixin with NSC value of 0.61 and -0.46, respectively. The AUC of 5-OH flunixin in plasma was also sensitive to the rest of body partition coefficient (Prest1), protein binding in plasma (PB1) and the metabolism rate constant (KmetC1) with NSC values of -0.44, -0.46 and -0.24, respectively.

User-friendly interface establishment and improvement

The code for the PBPK model for flunixin in cattle and swine was translated into R using the "deSolve" and "mrgsolve" packages. The average simulation time for each iteration using "deSolve" was longer than using "mrgsolve". Especially for a larger number of iterations, the simulation time differences were considerable. For the 1000-iteration simulation, code in "deSolve" would take around 10 hours, and "mrgsolve" code only consumed around 6 seconds (**Table S5**). These results suggest that using "mrgsolve" for Monte Carlo analysis of PBPK

7

models can substantially decrease the simulation time, and is more suitable for the purpose of real-time simulation. The user-friendly interface was established with "Shiny" package based on the R code using "mrgsolve" due to the shorter simulation time. By using the user-friendly interface, non-modelers or regular users could easily use and apply the population PBPK model to predict tissue residues of flunixin and determine the model-predicted WDIs. Model simulation data could be exported to the spreadsheet, and reanalyzed by users. In addition, for the convenience to use, the simulation result can also be downloaded as a report, which includes relevant information for FARAD responders to recommend WDIs following extralabel use of flunixin.

Tutorial for iPBPK Interface Tutorial for the Extralabel Withdrawal Interval Simulator

Introduction

This Rshiny tool is designed to apply the physiologically based pharmacokinetic (PBPK) models for veterinary drugs to predict extended withdrawal intervals (WDIs) following extralabel use in food-producing animals.

Background

The current PBPK model interface for flunixin in swine and cattle is based on our currently developed model. The PBPK model is a mechanistic-based pharmacokinetic model. Due to the lack of pharmacokinetic data for extralabel use of veterinary drugs, traditional pharmacokinetic tools have limitations to predict pharmacokinetic profiles for drugs administrated with higher doses, by different routes or even to different animal species. The PBPK model can be a useful tool to overcome these difficulties. The withdrawal intervals were predicted using the population PBPK model with Monte Carlo simulation.

For FARAD Responders

1. Open the App

For the Rshiny app, there is no need to install each individual app if you have RStudio installed on your computer or have internet access. There are two ways to open the 'Extralabel Withdrawal Interval Simulator'.

First option is to open the Rshiny app online. Currently, the app is available online through ShinyApps web server (<u>http://www.shinyapps.io/</u>). The app can be accessed through <u>https://pengpbpk.shinyapps.io/Flunixin/</u> or by using a short name <u>tiny.cc/flunixin</u>

Second option is to open the Rshiny app locally. If the app files available on the local computer, the simulator can also be opened by using RStudio. Make sure you have RStudio installed on your local computer, before running the app. Please refer to RStudio Tutorial (http://web.cs.ucla.edu/~gulzar/rstudio/) for details of RStudio installation and some basic information.

Double click the 'app.R' in the app file to open the app in RStuido, or by 'File > Open File ... > Flunixin App/app.R' in RStudio. Once you open the "app.R" file, you can click the "Run App" button to run the app on your local computer. We recommend to run the app on your local computer as Monte Carlo simulation for 1,000 animals is more stable to run on your local computer compared to the server online.

Note: If run the app on the local computer using RStudio, please click the 'Open in Browser' button to run the app in the web browser to avoid abnormal issues. If you click "Open in Browser", it looks like you are on a web page, but still it runs locally.

(C:) ► Flunixin App ►	RStudio File Edit Code View Plots Session Build New File New Project Open File	Click 'Run App' in RStudio
Share with ▼ Burn Name rsconnect www	Recent Files Using RStudio to Open Open Project Open Project in New Session Recent Projects Image Dataset	Click 'Open in Browser' Button
Image: Click to Open Image: Open opp	Save Ctrl+S Save As Save with Encoding Save All Ctrl+Alt+S	Extralabel Withdrawal Interval
Flunixin_Cattle	Knit Document Ctrl+Shift+K Compile Report Publish Print	

2. Interface Structure

The application interface contains four major parts including 'Title Panel', 'Side Panel', 'Parameter Input Panel', and 'Output Panel'.

Extralabel Withdrawal Interval Simulator	Title Panel
 Main Proc Model Parameters Parameters for Therapeutic Scenario Species Beef Cattle Beef Cattle Drug Flundin Target tissue Output Report About About Ministration route Iv Parameters Sticle Panel Mumber of animials 1000 Tolerance or MRL (ug/m, or ug/g) 0.125 Simulation time after tast administration 15 	<figure></figure>

The 'Title Panel' includes the title 'Extralabel Withdrawal Interval Simulator' and the side panel controller. By clicking the side panel controller, you can choose to show up or hide the side panel.

The side panel contains 'Main Plot', 'Model Parameters', 'Output Table', 'Model Structure', 'Code', 'Tutorial', "Output Report", and 'About' tabs. By clicking the tab name, you can switch among these tabs.

The 'Main Plot' and 'Model Parameter' tabs have parameter input panel. There are different types of controllers, such as switching buttons, dropdown lists, and input boxes. By clicking the

Parameters for Therapeutic Scenario	Target tissue	Physiological parameter	rs Chemical parameters
Species Beef Cattle	Kidney	Switching Apply Changes Defa	Button ult Values
Dropdown List Drug Flunixin Target tissue	Plasma Liver Kidney Muscle	BW mean 299.96	BW SD 46.19
Liver Administration route	Fat	5.97	1.99
iv		0.405	0.1942

switching buttons, you can choose in-between different conditions. For dropdown lists, you can choose different choices by clicking the downwards arrow. For input boxes, you can directly type in the value, or use the arrow to increase or decrease the default value provided.

All the tabs contain the output panels. For 'Main Plot', 'Model Parameters', and 'Output Table', the output panels show the simulation results using the parameter values you choose. The output panels in 'Model Structure', 'Code', 'Tutorial', and 'About' tabs provide information about the simulator, and are independent from model simulation output. You can download figures, tables or related codes by using the 'Download' button.

3. "Main Plot" Tab to Predict Extralabel WDIs

You can use the main tab ("Main Plot") to predict withdrawal intervals following extralabel use of veterinary drugs. By changing values of major parameters for therapeutic scenarios, the simulator will provide "Extralabel Withdrawal Interval Plot" as output.

Step One: Choose "Main Plot" tab (this is the default page, when you open the simulator)

	Extralabel Withdrawal Interval Simulator										
(📑 Main Plot										
	🗠 Model Parameters	Parameters for Therapeutic Scenario									
	🖽 Output Table	Species									
	📥 Model Structure	Beef Cattle									
	Code	Flunixin 🔻									
	🞓 Tutorial	Target tissue									
	🕒 Output Report	Liver									
	? About	Administration route									
		iv 🗸									

Step Two: By clicking the 'Apply Changes' button, you can run the simulator using the default values for all parameters. The "Apply Changes" button is on the bottom of the Parameter Input Panel. Once you click the "Apply Changes" button, the model will start running and you will see a progress bar "Creating plot Please Wait" on the right bottom corner. The default setting includes 1000 animals in a Monte Carlo simulation, so the simulation will be completed within 1 minute.

Apply Changes

Step Three: You can also change the parameter values by using dropdown lists or input boxes. For example, if you want to know the WDI for m swine treated with 2.2 mg/kg flunixin for 3 times with 24 hour intervals, and you want the simulator create a population with 1000 animals, you can choose "Market-age Swine" in "Species", "Liver" in "Target tissue", "1000" in "Number of animals", and "0.03" in "FSIS action level" (0.03 ug/g is the tolerance for flunixin in swine liver). All the other values are the same as default. After clicking the 'Apply Changes' button, the simulator starts to run simulations with the parameter values you input. When the simulations finish, the simulator will provide the pharmacokinetic profile of flunixin in liver in the output panel.

4. "Model Parameters" Tab to Change Values for Physiological or Chemical Parameters

In the PBPK model, there are two types of parameters involved, including physiological parameters and chemical-specific parameters. Generally, the simulation results generated based on the default parameter values are sufficient to answer most of FARAD calls. We recommend you directly use the default physiological/chemical-specific parameters to run the simulations. For advanced users, these values could also be revised to make the simulations more relevant to a particular scenario they want to simulate. If you need to use this function and have any questions, please feel free to contact the interface development team.

Step One: Choose "Model Parameters" tab

📕 Main Plot			
Model Parameters	Physiological pa	rameters	Chemical parameters
	Sv	vitching B	utton
🖽 Output Table	Apply Changes	Default V	alues
📥 Model Structure	BW mean	В	W SD
> Code	299.96		46.19

Step Two: In the parameter input panel, you can choose to use your customized values in 'Physiological parameters' or 'Chemical parameters' by using the switching buttons.

Step Three: By using input boxes, you can put your customized values for the parameters you are interested in. For example, if you want to simulate a group of swine with mean body weight as 50 kg, and standard deviation as 10. On the "Model Parameters" tab, you change the BW mean value from the default value to 50, and change the BW SD value from the default value to 10 (see the figure below). Then you go back to 'Main Plot' tab, and click apply changes. The results will be generated after all simulation finishes.

Physiological parameters Chemical parameters			Physiological pa	rameters Chemical parameters
Apply Change	es Default Values		Apply Changes	Default Values
BW mean 33.22	BW SD 6.01	×	BW mean	BW SD
QCC mean 8.543	Input Box QCC SD		QCC mean 8.543	QCC SD
QLC mean 0.273	QLC SD 0.081	75 👤	QLC mean	QLC SD

5. Download Figures and Tables from "Model Parameters" and "Output Table" Tabs

After the desired simulations, there are output figures and tables you can save to files in your local computer. In the "Model Parameters" tab, you can download figures of pharmacokinetic profiles in major edible tissues, including liver, kidney, muscle, and fat. You can also download the table of pharmacokinetic data for the drug in different edible tissues. Note that the generated table only contains the 1th, 50th, and 99th percentiles of the simulated concentrations of the drug in different tissues among the simulated population of animals. Due to the large number of animals that are typically included in a population simulation (e.g., 1,000 animals), the individual animal concentration data are not included in the output table. If individual animal concentration data are needed, please contact the interface development team.

The output report can be downloaded from the "Output Report" tab. By choosing the "Output Report" tab in the "Side Panel", the output report based on your input parameters could be generated from the simulator. Three different output formats, including PDF, HTML and WORD, could be applied to the output report by click the corresponding radio button. You can use the download button to save the report on your local computer.

		Main Plot	Output Report
	2	Model Parameters	Document format Radio Buttons
	▦	Output Table	PDF HTML Word
		Model Structure	Download Report
	>	Code	Download Dutton
	\$	Tutorial	
<	ß	Output Report	
	8	About	

6. Common Simulation Results.

All the simulation results reported here are based on the simulations of 1,000 animals with 3 repeated intravascular (IV) doses for cattle and intramuscular (IM) single dose for swine. The predicted WDIs for the label use of flunixin are listed below in the table.

	Bee	Beef Cattle (IV) Ma			ket-age Swine (IM)		
Dose	Label Withdrawal	Withdrawal Intervals (Days)		Label Withdrawal	Withdrawal Intervals (Days)		
	Time	Exact Value	Round Value	Time	Exact Value	Round Value	
2.2 mg/kg (label dose)	4	5.92 6		12	12.38	13	

Note: The labeled withdrawal time of flunixin is based on the formulation NADA 101-479. The labeled indications are 2.2 mg/kg daily IV injection for up to 3 days of treatment for cattle and 2.2 mg/kg through single IM injection for swine (all use classes).

Related simulation results are shown blow in figures.

Acknowledgement

The project is supported by the United States Department of Agriculture National Institute of Food and Agriculture for the Food Animal Residue Avoidance Databank (FARAD) Program (http://www.farad.org/).

Sample Output for iPBPK Interface

Flunixin PBPK Model Output

The results were achieved using our population PBPK model of Flunixin in Swine and Cattle. These results were based on the Monte Carlo simulation of 1000 animals after exposure to Flunixin via the iv administration at 2.2 mg/kg for 3 doses with 24-hour intervals in Beef Cattle.

Based on the VetGRAM database, the labeled use for Flunixin is 2.2 mg/kg daily or divided into 2 doses through iv injection for up to 3 days of treatment in Adult Cattle, and the labeled withdrawal period is 4 days for the formulation with NADA number of 101-479. The tolerance of Flunixin is 0.125 ppm or ug/g in the target tissue of liver in cattle.

Based on the parameters you have provided, the simulation results showed that at 5.92 days after the last administration, the concentration of flunixin in the liver was lower than the tolerance for the 99th percentile of the simulated population of animals. Thus, the recommended extended withdrawal interval (WDI) is 6 days. According to FDA guidelines, if the estimated WDI is a fraction of a day, it should be rounded up to the next whole day.

Liver as the target organ

Note: we would like to notify that by providing a withdrawal interval recommendation, it could be interpreted as advising/prescribing extra label drug use which requires a valid veterinary client patient relationship. In addition, the prescribing or advising veterinarian will be held responsible for any violative residues.

Fig. S1 Model calibration and evaluation of PBPK model for flunixin in cattle using pharmacokinetic data. Comparison of model predictions (solid line) and observed data (red circles) for concentrations of flunixin in the plasma, kidney and fat from beef cattle exposed to flunixin via single IV injection (A and E; 2.2 mg/kg; Shelver et al. 2013 [18] and Kleinhenz et al. 2016 [40]), 3 repeated IV administrations (B and C; 2.2 mg/kg; FDA, 1998 [16]). Model prediction for concentrations of 5-OH flunixin in plasma compared with observed data from single IV administration (D; 2.2 mg/kg; Shelver et al. 2013 [18]).

Fig. S2 Model calibration of PBPK model for flunixin in swine using pharmacokinetic data. Comparison of model predictions (solid line) and observed data (red circles) for concentrations of flunixin in the plasma from swine exposed to 2.2 mg/kg flunixin via single IV injection and single IM injection (A and B respectively; 2.2 mg/kg; Pairis-Garcia et al. 2013 [21]).

Fig. S3 Linear regression analysis for calibration and evaluation results in cattle and swine. A is the linear regression analysis for simulation results of cattle calibration. B is the linear regression analysis for simulation results of cattle evaluation. C is the linear regression analysis for simulated results of swine calibration. D is the linear regression analysis for simulated results of swine calibration. D is the linear regression analysis for simulated results of swine evaluation.

Fig. S4 The MAPE analysis for calibration and evaluation results in cattle and swine. All the MAPE values for model simulation results are lower than 50%.

Fig. S5 The predicted WDIs calculated based on sampling of 25 samples from 1000 samples for 1000 times. The blue line stands for the predicted WDIs based on the 1000 samples. The red circles represent WDIs calculated based on 25 samples bootstrapped from the population with 1000 samples.

Normalized Sensitivity Coefficients

Fig. S6 The normalized sensitivity coefficients for sensitive parameters based on the sensitivity analysis. The non-sensitive parameters include: VartC, VvenC, VKC, VMC, VFC, VrestC, VrestC1, QKC, QMC, QFC, QrestC, QrestC1, Kim, Ksc, PL, PL1, PK1, PM, PF, Prest, KehcC, KbileC, KbileC1, KurineC, KurineC1, Kint and Kfeces.

Supplementary Tables

Label Species	Label Routes	Label Dose	Withdrawal Time	Tolerance	Indications for Use
Swine	IM	IM 2.2 mg/kg BW as a single injection	12 days	Liver: 30 ppb Muscle: 25 ppb	Control of pyrexia associated with respiratory disease
Cattle	IV, Transdermal	IV 1.1 to 2.2 mg/kg BW per day, as a single dose or divided into two doses at 12-hour intervals, for up to 3 days	For meat, 4 days (IV) and 8 days (Transdermal); For milk, 36 h	Liver: 125 ppb Muscle: 25 ppb Milk: 2 ppb	Control of pyrexia associated with respiratory disease and endotoxemia or for control of inflammation in endotoxemia.
Horse (Not for Meat Use)	IV, IM	1.1 mg/kg BW per day, IV or IM for up to 5 days	NA	NA	Alleviation of inflammation and pain associated with musculoskeletal disorders, and alleviation of visceral pain associated with colic.

Table S1. Label use of flunixin in the form of flunixin meglumine

						-		
Deve as effect	A h h	Distail	Maar	CD.	CV	Lower	Upper	Deferment
Pady weight (kg)	Abbreviation	Normal	200.057	5D 4 618E±01	0.154*	200.450	200 464	
Cardiac output (I /h/kg)	DCC	Normal	5 970	4.018E+01	0.134	209.450	9 870	[23]
Tissue volume (fraction of body weight, unitless)	QUU	rtormar	5.970	1.9901.00	0.555	2.070	2.070	
Arterial blood	VartC	Normal	0.010	3.120E-03	0.300	0.004	0.017	[4]
Venous blood	VvenC	Normal	0.030	8.880E-03	0.300	0.012	0.047	[4]
Liver	VLC	Normal	0.014	1.630E-03	0.120*	0.010	0.017	[25]
Kidney	VKC	Normal	0.0025	4.321E-04	0.174*	0.0016	0.0033	[25]
Muscle	VMC	Normal	0.270	8.100E-02	0.300	0.111	0.429	[2,4]
Fat	VFC	Normal	0.150	4.500E-02	0.300	0.062	0.238	[2,4]
Rest of body	VrestC	Normal	0.5235	1.572E-01	0.300	0.216	0.832	Total adds to 1
Rest of body for metabolite submodel	VrestC1	Normal	0.9435	2.832E-01	0.300	0.389	0.990	Total adds to 1
Blood flow (fraction of cardiac output, unitless)								
Liver	QLC	Normal	0.405	1.942E-01	0.480*	0.024	0.785	[24, 26]
Kidney	QKC	Normal	0.090	2.700E-02	0.300	0.037	0.143	[4]
Muscle	QMC	Normal	0.180	5.400E-02	0.300	0.074	0.286	[4]
Fat	QFC	Normal	0.080	2.400E-02	0.300	0.033	0.127	[4]
Rest of body	QrestC	Normal	0.245	7.360E-02	0.300	0.101	0.390	Total adds to 1
Rest of body for metabolite submodel	QrestC1	Normal	0.505	1.515E-01	0.300	0.208	0.802	Total adds to 1
Absorption rate constant (/h)								
Intramuscular	Kim	Lognormal	0.500	1.500E-01	0.300	0.269	0.851	Model fitted
Subcutaneous	Ksc	Lognormal	0.400	1.200E-01	0.300	0.216	0.681	Model fitted
Tissue:plasma partition coefficient for the parent drug (unitless)		C						
Liver	PL	Lognormal	10.520	2.104E+00	0.200	6.997	15.208	Model fitted
Liver (50H FLU)	PL1	Lognormal	9.260	1.852E+00	0.200	6.159	13.387	Model fitted
Kidney	РК	Lognormal	4.000	8.000E-01	0.200	2.661	5.783	Model fitted
Kidney (50H FLU)	PK1	Lognormal	4.000	8.000E-01	0.200	2.661	5.783	Model fitted
Muscle	PM	Lognormal	0.500	1.000E-01	0.200	0.333	0.723	Model fitted
Fat	PF	Lognormal	0.600	1.200E-01	0.200	0.399	0.867	Model fitted
Rest of body	Prest	Lognormal	8.000	1.600E+00	0.200	5.321	11.565	Model fitted
Rest of body (50H FLU)	Prest1	Lognormal	5.000	1.000E+00	0.200	3.326	7.228	Model fitted
Hepatic metabolic rate (/h/kg)	KmetC	Lognormal	0.2000	4.000E-02	0.200	0.133	0.289	Model fitted
Rate constant for the regeneration of flunixin free acid from		U						
metabolites and enterohepatic circulation (/h/kg)	KehcC	Lognormal	0.0500	1.500E-02	0.300	0.027	0.085	Model fitted
Percentage of plasma protein binding (unitless)	PB	Lognormal	0.950	2.850E-01	0.300	0.5118	0.990#	Model fitted
Percentage of plasma protein binding (unitless) (50H FLU)	PB1	Lognormal	0.990	2.970E-01	0.300	0.5334	0.990#	Model fitted
Biliary elimination rate constant (L/h/kg)	KbileC	Lognormal	0.500	1.500E-01	0.300	0.269	0.851	Model fitted
Biliary elimination rate constant (L/h/kg) (50H FLU)	KhileC1	Lognormal	0 100	3 000E-02	0.300	0.054	0.170	Model fitted
Urinary elimination rate constant ($L/h/kg$)	KurineC	Lognormal	0.100	3.000E-02	0.300	0.054	0.170	Model fitted
Urinary elimination rate constant (L/h/kg) (50H FLU)	KurineC1	Lognormal	0.200	6.000E-02	0.300	0.108	0.341	Model fitted
Intestinal transit rate constant (/h)	Kint	Lognormal	0.400	1.200E-01	0.300	0.216	0.681	[39]
Fecal elimination rate constant (/h)	Kfeces	Lognormal	0.500	1.500E-01	0.300	0.269	0.851	Model fitted

Table S2. Values and distributions of parameters used in the population analysis for the PBPK model of beef cattle

Notes: Some parameters were estimated by calibrating the PBPK model with pharmacokinetic data. These parameters were marked as 'model fitted'. The star sign (*) indicates the CV of that parameter was calculated based on previous experimental data. For the parameters without calculated CVs, the default values of CVs for physiological parameters were 0.3. For chemical-specific parameters such as tissue to plasma partition coefficients and hepatic metabolic rate, the default CVs were 0.2. For the other chemical-specific parameters such as percentage of plasma protein binding, and rate constants for enterohepatic circulation, biliary and urinary eliminations, the default CVs were 0.3. The pound sign (#) indicates the upper bound of plasma protein binding is lower than 1 based on the physiological plausibility. The 95% confidence interval of each parameter was calculated as the lower (i.e., 2.5th percentile) and upper (i.e., 97.5th percentile) bounds.

Table S3. Values and distributions of parameters used in the population analysis for the PBPK model of swine

						Lower	Upper	
Parameter	Abbreviation	Distribution	Mean	SD	CV	bound	bound	Reference
Body weight (kg)	BW	Normal	33.182	6.451E+00	0.194*	20.539	45.825	[27-30]
Cardiac output (L/h/kg)	QCC	Normal	8.543	1.910E+00	0.224*	4.800	12.287	[27, 28]
Tissue volume (fraction of body weight, unitless)								
Arterial blood	VartC	Normal	0.016	4.680E-03	0.300	0.006	0.025	[4]
Venous blood	VvenC	Normal	0.044	1.332E-02	0.300	0.018	0.071	[4]
Liver	VLC	Normal	0.023	3.609E-04	0.015*	0.023	0.024	[28, 29, 31]
Kidney	VKC	Normal	0.0045	1.738E-04	0.038*	0.0042	0.0049	[28, 39]
Muscle	VMC	Normal	0.355	2.494E-03	0.007*	0.351	0.360	[32]
Fat	VFC	Normal	0.235	1.802E-02	0.077*	0.200	0.270	[30]
Rest of body	VrestC	Normal	0.3225	9.346E-02	0.300	0.128	0.495	Total adds to 1
Rest of body for metabolite submodel	VrestC1	Normal	0.9125	2.736E-01	0.300	0.376	0.990	Total adds to 2
Blood flow (fraction of cardiac output, unitless)								
Liver	QLC	Normal	0.273	8.175E-02	0.300	0.112	0.433	[4, 33]
Kidney	QKC	Normal	0.116	1.733E-02	0.149*	0.082	0.150	[27, 28]
Muscle	QMC	Normal	0.293	4.216E-02	0.144*	0.211	0.376	[29]
Fat	QFC	Normal	0.128	3.825E-02	0.300	0.053	0.202	[4, 33]
Rest of body	QrestC	Normal	0.190	5.712E-02	0.300	0.078	0.302	Total adds to 1
Rest of body for metabolite submodel	QrestC1	Normal	0.611	1.833E-01	0.300	0.252	0.970	Total adds to 1
Absorption rate constant (/h)								
Intramuscular	Kim	Lognormal	1.000	3.000E-01	0.300	0.539	1.703	Model fitted
Subcutaneous	Ksc	Lognormal	0.400	1.200E-01	0.300	0.216	0.681	Model fitted
Tissue:plasma partition coefficient for the parent drug (unitless)								
Liver	PL	Lognormal	10.520	2.104E+00	0.200	6.997	15.208	Model fitted
Liver (50H FLU)	PL1	Lognormal	9.260	1.852E+00	0.200	6.159	13.387	Model fitted
Kidney	РК	Lognormal	4.000	8.000E-01	0.200	2.661	5.783	Model fitted
Kidney (50H FLU)	PK1	Lognormal	4.000	8.000E-01	0.200	2.661	5.783	Model fitted
Muscle	PM	Lognormal	0.500	1.000E-01	0.200	0.333	0.723	Model fitted
Fat	PF	Lognormal	0.600	1.200E-01	0.200	0.399	0.867	Model fitted
Rest of body	Prest	Lognormal	8.000	1.600E+00	0.200	5.321	11.565	Model fitted
Rest of body (5OH FLU)	Prest1	Lognormal	5.000	1.000E+00	0.200	3.326	7.228	Model fitted
Hepatic metabolic rate (/h/kg)	KmetC	Lognormal	0.200	4.000E-02	0.200	0.133	0.289	Model fitted
Rate constant for the regeneration of flunixin free acid from								
metabolites and enterohepatic circulation (/h/kg)	KehcC	Lognormal	0.150	4.500E-02	0.300	0.081	0.255	Model fitted
Percentage of plasma protein binding (unitless)	РВ	Lognormal	0.950	2.850E-01	0.300	0.5118	0.990#	Model fitted
Percentage of plasma protein binding (unitless) (50H FLU)	PR1	Lognormal	0.990	2.020E-01	0.300	0 5334	0.990#	Model fitted
Riliary elimination rate constant (L/h/kg)	KhileC	Lognormal	0.100	3.000E-02	0.300	0.054	0.170	Model fitted
Biliary elimination rate constant (L/h/kg) (50H FLU)	KhileC1	Lognormal	0.100	3.000E-02	0.300	0.054	0.170	Model fitted
Urinary elimination rate constant (L/h/kg) (50111 LO)	KurineC	Lognormal	0.100	3 000E-02	0.300	0.054	0.170	Model fitted
Urinary elimination rate constant (L/h/kg) (50H FLU)	KurineC1	Lognormal	0.100	3 000E-02	0.300	0.054	0.170	Model fitted
Intestinal transit rate constant (/h)	Kint	Lognormal	0.100	1 200E 01	0.300	0.054	0.691	[20]
Fecal elimination rate constant $(/h)$	KIIII K feces	Lognormal	0.400	1.200E-01	0.300	0.210	0.001	[J7] Model fitted
recai emmination rate constant (/ff)	NIECES	Lognormai	0.300	1.300E-01	0.300	0.209	0.001	woder miled

Notes: Some parameters were estimated by calibrating the PBPK model with pharmacokinetic data. These parameters were marked as 'model fitted'. The star sign (*) indicates the CV of that parameter was calculated based on previous experimental data. For the parameters without calculated CVs, the default values of CVs for physiological parameters were 0.3. For chemical-specific parameters such as tissue to plasma partition coefficients and hepatic metabolic rate, the default CVs were 0.2. For the other chemical-specific parameters such as percentage of plasma protein binding, and rate constants for enterohepatic circulation, biliary and urinary eliminations, the default CVs were 0.3. The pound sign (#) indicates the upper bound of plasma protein binding is lower than 1 based on the physiological plausibility. The 95% confidence interval of each parameter was calculated as the lower (i.e., 2.5th percentile) and upper (i.e., 97.5th percentile) bounds.

Table S4. Withdrawal time predictions and 95% confidence intervals for the 99th percentile of the population for different therapeutic scenarios after 1000 Monte Carlo runs of 1000 iterations.

Spacios	Thorse outin Seconarios	WDI	95% confidence interval (days)		
species	Therapeutic Scenarios	(days)	Lower bound	Upper bound	
Cattle	Label (IV 3 repeated doses)	5.87	5.86	5.88	
	Exlabel (IM 3 repeated doses)	5.96	5.95	5.97	
Swine	Label (IM single doses)	12.14	12.12	12.15	
	Exlabel (IM 3 repeated doses)	15.29	15.27	15.31	

Notes: The abbreviations: WDI, withdrawal interval; IV, intravascular injection; IM, intramuscular injection.

Iteration	Simulation Time (second)					
Number	deSolve (original)	mrgsolve (improved)				
1	11.98	0.01				
10	115.66	0.07				
100	1482.59	0.61				
1000	35790.92 (9.94 hours)	6.22				
10000	~ (speed slows down significantly with increased simulation)	60.53				

Table S5. Comparison of simulation time with different iterations between the "deSolve"and "mrgsolve" packages.

Notes: The configurations of the computer for these reported simulation times were listed as followings. Processor: Intel(R) Xeon(R) CPU E5-1620 @ 3.60GHz; RAM: 26.0 GB; System type: Windows 7 Professional 64-bit Operating System.

	Flunixin	5-OH Flunixin
CAS#	38677-85-9	75369-61-8
MW	296.25	312.25
рКа	5.82	4.47*
logP	4.9*	3.89*
fup	0.01[8]	0.02#

Table S6. Values of physicochemical parameters for flunixin and 5-OH flunixin.

Notes: CAS#, Chemical Abstracts Service number; MW, molecular weight; pKa, acid dissociation constant; logP, octanol to water partition coefficient; fup, fraction of unbound in plasma. Values were acquired from PubChem unless otherwise indicated. *, values acquired from ChemSpider. #, predicted value from Simcyp Animal Module (Version 16.0.113.0)

Parameters	GastroPlus	PK-Sim	Simcyp	RR Rat	RR Swine
Kidney	14 (0.14)	14 (0.14)	14.1 (0.141)	14.12	14.04
Liver	10 (0.1)	10 (0.1)	9.7 (0.097)	9.74	10.52
Muscle	7 (0.07)	7 (0.07)	7.2 (0.072)	7.2	7.41
Fat	7 (0.07)	9 (0.09)	8.6 (0.086)	6.10	8.57
Skin	29 (0.29)	30 (0.3)	30.4 (0.304)	30.4	31.77
Rest of body	13 (0.13)				
Lung	22 (0.22)	22 (0.22)	22.5 (0.225)	22.51	22.39
Heart	17 (0.17)	17 (0.17)	16.7 (0.167)	16.71	16.93
Spleen	11 (0.11)	10 (0.1)	10.4 (0.104)	10.46	10.73
Brain	7 (0.07)	7 (0.07)	6.7 (0.067)	6.77	9.86
Bone		11 (0.11)	10.8 (0.108)	10.86	
Gut		18 (0.18)	17.8 (0.178)	17.78	
Gonads		5 (0.05)			
poorly					
richly					
ReproOrg	15 (0.15)				
RedMarrow	17 (0.17)				
YellowMarrow	7 (0.07)				

Table S7. Tissue to plasma partition coefficients for flunixin and 5-OH flunixin estimated using different methods

Flunixin

Parameters	GastroPlus	PK-Sim	Simcyp	RR Rat	RR Swine
Kidney	13 (0.13)	13 (0.13)	13.7 (0.137)	13.509	13.492
Liver	9 (0.09)	9 (0.09)	9.3 (0.093)	9.089	9.264
Muscle	7 (0.07)	7 (0.07)	6.3 (0.063)	6.814	6.862
Fat	5 (0.05)	6 (0.06)	5.7 (0.057)	5.287	5.957
Skin	28 (0.28)	28 (0.28)	28.5 (0.285)	28.476	28.784
Rest of body	13 (0.13)				
Lung	22 (0.22)	22 (0.22)	21.7 (0.217)	21.726	21.699
Heart	16 (0.16)	16 (0.16)	16.3 (0.163)	16.193	16.242
Spleen	10 (0.1)	10 (0.1)	10.3 (0.103)	10.132	10.194
Brain	5 (0.05)	6 (0.06)	5.7 (0.057)	5.520	6.212
Bone		10 (0.1)	10.6 (0.106)	10.298	
Gut		16 (0.16)	16.6 (0.166)	16.485	
Gonads		5 (0.05)			
ReproOrg	15 (0.15)				
RedMarrow	16 (0.16)				
YellowMarrow	5 (0.05)				

5-OH Flunixin

Notes: The values of tissue to plasma partition coefficients for unbound drugs in plasma by different methods were listed in the table. The original predicted values based on total drugs in plasma by the selected commercial software were included in the table with parentheses. RproOrg is the abbreviation for reproductive organs. RR is the abbreviation for Rodgers and Rowland method. The predicted values of tissue to plasma partition coefficients from three commercial software are based on total chemical concentrations in plasma, while Rodgers and Rowland method uses free chemical concentrations in plasma in the calculation of partition coefficients.

Sensitive	Normalized sensitivity coefficients (NSCs)				
Parameter	AUCCV	AUCCL	AUCCK	AUCCV1	
BW	-0.36	-0.37	0.09	-0.24	
QCC	0.00	0.00	0.00	0.99	
QLC	-0.37	-0.35	0.08	-0.25	
VLC	0.00	0.00	0.00	-0.99	
РК	0.05	0.05	0.05	0.61	
Prest1	-0.01	-0.05	-0.01	-0.44	
PB	-0.07	-0.12	-0.09	-0.46	
PB1	-0.07	-0.12	-0.09	-0.46	
KmetC	0.07	0.07	0.07	-0.24	

 Table S8. Sensitive parameters identified by the local sensitivity analysis

Additional Files and Instructions

1. Additional files

The "additional files" folder includes several separate folders: Codes, Datasets, and Results.

- Codes folder: Berkeley Madonna codes for model calibration, evaluation and population analysis.
 - Cattle: The codes for average and population PBPK models in cattle.
 - Swine: The codes for average and population PBPK models in swine.
- **Datasets folder**: All datasets used in model calibration and evaluation are included in this folder. Please refer to Table 1 for details.

"Calibration" folder (the following data file names are designed according to the figure numbers and figure panel names):

The following data files are for cattle:

- 2a: The dataset from Odensvik and Johansson 1995 [17]: Single IV (2.2 mg/kg); Matrix: Plasma.
- 2b: The dataset from Odensvik and Johansson 1995 [17]: Single IM (2.2 mg/kg); Matrix: Plasma.
- 2c: The dataset from Shelver et al. 2013 [18]: Single SC (2.2 mg/kg); Matrix: Plasma.
- 2d: The dataset from FDA 1998 [16]: 3-Dose IV (2.2 mg/kg); Matrix: Liver.
- 2e: The dataset from FDA 1998 [16]: 3-Dose IV (2.2 mg/kg); Matrix: Muscle.
- 2f: The dataset from Shelver et al. 2013 [18]: Single SC (2.2 mg/kg); Matrix: Plasma (5-OH Flunixin).

The following data files are for swine:

- 2g: The dataset from Howard et al. 2014 [20]: Single IV (3 mg/kg); Matrix: Plasma.
- 2h: The dataset from Howard et al. 2014 [20]: Single IV (3 mg/kg); Matrix: Plasma (5-OH Flunixin).
- 2i: The dataset from FDA 2005 [22]: 3-Dose IM (2.2 mg/kg); Matrix: Liver.
- 2j: The dataset from FDA 2005 [22]: 3-Dose IM (2.2 mg/kg); Matrix: Kidney.
- 2k: The dataset from FDA 2005 [22]: 3-Dose IM (2.2 mg/kg); Matrix: Muscle.
- 21: The dataset from FDA 2005 [22]: 3-Dose IM (2.2 mg/kg); Matrix: Fat.

"Evaluation" folder:

The following data files are for cattle:

- 3a: The dataset from Odensvik 1995 [19]: Single IV (2.2 mg/kg); Matrix: Plasma.
- 3b: The dataset from Jaroszewski et al. 2008 [34]: 4-Dose IV (2.2 mg/kg); Matrix: Plasma.
- 3c: The dataset from Kissell et al. 2016 [35]: 3-Dose IV (2.2 mg/kg); Matrix: Plasma.
- 3d: The dataset from Kissell et al. 2016 [35]: 3-Dose IV (2.2 mg/kg); Matrix: Liver.
- 3e: The dataset from Kissell et al. 2016 [35]: 3-Dose IV (2.2 mg/kg); Matrix: Kidney.
- 3f: The dataset from Kissell et al. 2016 [35]: 3-Dose IV (2.2 mg/kg); Matrix: Muscle.

- 3g: The dataset from Jaroszewski et al. 2008 [34]: 4-Dose IV (2.2 mg/kg); Matrix: Plasma (5-OH Flunixin).
- 3h: The dataset from Kissell et al. 2016 [35]: 3-Dose IV (2.2 mg/kg); Matrix: Plasma (5-OH Flunixin).

The following data files are for swine:

- 3i: The dataset from Yu et al. 2007 [36]: Single IV (2.2 mg/kg); Matrix: Plasma.
- 3j: The dataset from Yu et al. 2007 [36]: Single IV (1.1 mg/kg); Matrix: Plasma.
- 3k: The dataset from Yu et al. 2007 [36]: Single IM (2.2 mg/kg); Matrix: Plasma.
- 31: The dataset from Yu et al. 2007 [36]: Single IM (1.1 mg/kg); Matrix: Plasma.
- 3m: The dataset from Buur et al. 2006 [37]: Single IV (2 mg/kg); Matrix: Plasma.
- 3n: The dataset from EMEA 1999 [38]: Single IM (2.4 mg/kg); Matrix: Liver.
- 30: The dataset from EMEA 1999 [38]: Single IM (2.4 mg/kg); Matrix: Kidney.
- 3p: The dataset from EMEA 1999 [38]: Single IM (2.4 mg/kg); Matrix: Muscle.

"Supplementary" folder:

The following data files are for cattle:

- S1a: The dataset from Shelver et al. 2013 [18]: Single IV (2.2 mg/kg); Matrix: Plasma.
- S1b: The dataset from FDA 1998 [16]: 3-Dose IV (2.2 mg/kg); Matrix: Kidney.
- S1c: The dataset from FDA 1998 [16]: 3-Dose IV (2.2 mg/kg); Matrix: Fat.
- S1d: The dataset from Shelver et al. 2013 [18]: Single IV (2.2 mg/kg); Matrix: Plasma (5-OH Flunixin).
- S1e: The dataset from Kleinhenz et al. 2016 [40]: Single IV (2.2 mg/kg); Matrix: Plasma.

The following data files are for swine:

- S2a: The dataset from Pairis-Garcia et al. 2013 [21]: Single IV (2.2 mg/kg); Matrix: Plasma.
- S2b: The dataset from Pairis-Garcia et al. 2013 [21]: Single IM (2.2 mg/kg); Matrix: Plasma.
- **Results folder**: This folder contains the original data files used to generate all figures presented in the manuscript and in the Supplementary Materials.

2. Instructions on the model code

This instructions can be separated into two parts, including Part I: model calibration, evaluation and population analysis using Berkeley Madonna; Part II: raw data for all results presented in the manuscript.

Part I: Model calibration, evaluation and population analysis using Berkeley Madonna:

- 1. Open the code in Codes/Cattle.
- 2. Click the "Run" button, the single animal model takes about 10 seconds to run.

🚸 Berkele	y Madonna - Flunixin_Cattle_Model_1_22_Combined
File Edit	Flowchart Model Compute Graph Parameters Window Help
0 🖻	
	Flunixin PBPK model for Cattle (flow-limited model, linear metabolism equation, plasma protein The PBPK model code is based on the penicillin G model from Li et al. 2017 METHOD RK4 STARTTIME = 0

3. For the file with "PopAnalysis", choose "Batch run" from "Parameters" tab.

Berkeley Madonna	- Flunixin_Cattle_Model_1_2	2_PopAn	alysis		
le Edit Flowcha	rt Model Compute Gra	ph Para	meters Window Help		-
	6 ?		Parameter Window	Ctrl+Shift+P	
			Define Sliders Show Sliders		
			Batch Runs	Ctrl+M	le_Model_1_22_PopAnalysis - CLppm vs. TIME
_			Repeat Batch Runs	Ctrl+Shift+M	
Run Fluriz	hixin_Cattle_Model_1_22_Pop	Ana (flo	Curve Fit Optimize Parameter Plot		plasma protein binding)
The F }	BPK model code is based	l on	Sensitivity]
METH	HOD RK4				
STAF STOP DT = DTOU	RTTIME = 0 PTIME= 500 0.00025 JT = 0.1	; h			
{Phys ; Bloc QCC	siological Parameters} od Flow Rates = 5.970	; L/h/k	g, Cardiac Output (Li et	al. 2017)	

4. Set the number of runs to 1000, and click OK.

Batch Runs	X
Parameter: (None)	•
# of Runs: 1000	Series type:
Initial Value:	C Geometric
Final Value:	Values:
Mode:	A
💿 Keep Runs Separate	
C Compute Mean	
Compute Mean ± SD	-
Cancel	ОК

5. The 1000-time simulation may take from 2-12 hours to finish depending on the computer.

Part II: Raw data for all results presented in the manuscript

• Open the folder "**Results**". The folder include 10 sub-folder for figures in the manuscript and in the Supplementary Materials. Each of the folder contains relevant raw data and graphpad file for creating figures to reproduce the figures.

Model Codes

Average PBPK Model for Flunixin in Cattle using Berkeley Madonna

{

Flunixin PBPK model for Cattle (flow-limited model, linear metabolism equation, plasma protein binding) The PBPK model code is based on the penicillin G model from Li et al. 2017

METHOD RK4 STARTTIME = 0STOPTIME= 400 ; h DT = 0.00025DTOUT = 0.1{Physiological Parameters} ; Blood Flow Rates QCC = 5.970; L/h/kg, Cardiac Output (Li et al. 2017) ; Fraction of blood flow to organs (unitless) ; Fraction of blood flow to the liver (Li et al. 2017) OLC = 0.405; Fraction of blood flow to the kidneys (Li et al. 2017) QKC = 0.090; Fraction of blood flow to the muscle (Li et al. 2017) QMC = 0.180; Fraction of blood flow to the fat (Li et al. 2017) QFC = 0.080QrestC = 1-QLC-QKC-QFC-QMC; Fraction of blood flow to the rest of body (total sum equals to 1) ; Fraction of blood flow to the rest of body for the metabolite submodel QrestC1 = 1-QLC-QKC; Tissue Volumes BW = 300; Body Weight (kg) ; Fractional organ tissue volumes (unitless) VLC = 0.014; Fractional liver tissue (Li et al. 2017) VKC = 0.0025; Fractional kidney tissue (Li et al. 2017) VFC = 0.150; Fractional fat tissue (Li et al. 2017) VMC = 0.270; Fractional muscle tissue (Li et al. 2017) VvenC = 0.030; Venous blood volume, fraction of blood volume (Li et al. 2017) VartC = 0.010; Arterial blood volume, fraction of blood volume (Li et al. 2017) VbloodC = VvenC+VartC VrestC = 1-VLC-VKC-VFC-VMC-VvenC-VartC; Fractional rest of body (total sum equals to 1) VrestC1 = 1-VLC-VKC-VvenC-VartC; Fractional rest of body for the metabolite submodel {Mass Transfer Parameters (Chemical-Specific Parameters)} ; Flunixin and 50H Flunixin Molecular Weight MW = 296.24; mg/mmol MW1 = 312.24; mg/mmol ; Partition Coefficients for FLU (PC, tissue:plasma) PL = 10.52; Liver:plasma PC, model fitting PK = 4; Kidney:plasma PC, model fitting PM = 0.5; Muscle:plasma PC, model fitting PF = 0.6; Fat:plasma PC, model fitting Prest = 8; Rest of body:plasma PC, model fitting ; Partition Coefficients for 5OH FLU (PC, tissue:plasma) ; Liver:plasma PC, model fitting PL1 = 9.26; Kidney:plasma PC, model fitting PK1 = 4

Prest1 = 5	; Rest of body:plasma PC, model fitting
{Kinetic Constants} ; Rate Constants in GI compartment Kint = 0.4 Kfeces = 0.5	ts ; /h, intestinal transit rate constant, model fitting ; /h, fecal elimination rate constant, model fitting
; IM Absorption Rate Constants Kim = 0.50	; /h, IM absorption rate constant, model fitting
; SC Absorption Rate Constants Ksc = 0.40	; /h, SC absorption rate constant, model fitting
; Percentage Plasma Protein Bindin, PB = 0.95 Skidmore et al., 2008 and Thiry et a Free = 1 -PB	g unitless ; Percentage of FLU bound to plasma proteins, Initial value of 0.99 from Il., 2017, then optimized by fitting to Odensvik and Johansson, 1995 dataset
PB1 = 0.99 structural similarity with FLU Free1 = 1-PB1	; Percentage of 50H FLU bound to plasma proteins, Initial value of 0.99 by
{Metabolic Rate Constant} KmetC = 0.200 KehcC = 0.050	; /h/kg, metabolic rate constant from FLU to 50H FLU, model fitting ; /h/kg, rate constant for the enterohepatic circulation, model fitting
; Urinary Elimination Rate Constan KurineC = 0.100 KurineC1 = 0.200	ts ; L/h/kg, urine elimination rate constant for FLU, model fitting ; L/h/kg, urine elimination rate constant for 50H FLU, model fitting
; Biliary Elimination Rate Constats KbileC = 0.500 KbileC1 = 0.100	; L/h/kg, biliary secretion rate constant for FLU, model fitting ; L/h/kg, biliary secretion rate constant for 50H FLU, model fitting
{Parameters for Various Exposure S PDOSEiv = 0 PDOSEsc = 0 PDOSEim = 2.2	Scenarios} ; (mg/kg) ; (mg/kg) ; (mg/kg)
{Cardiac output and blood flow to t QC = QCC*BW QL = QLC*QC QK = QKC*QC QF = QFC*QC QM = QMC*QC Qrest = QrestC*QC Qrest1 = QrestC1*QC	issues (L/h)} ; Cardiac output ; Liver ; Kidney ; Fat ; Muscle ; Rest of body ; Rest of body for the metabolite submodel
{Tissue volumes (L)} VL = VLC*BW VK = VKC*BW VF = VFC*BW VM = VMC*BW Vrest = VrestC*BW Vven = VvenC*BW Vart = VartC*BW	; Liver ; Kidney ; Fat ; Muscle ; Rest of body ; Venous Blood ; Arterial Blood

Vblood = VbloodC*BW Vrest1 = VrestC1*BW	; Total Blood ; Rest of body for the metabolite submodel		
; Metabolic rate constant Kmet = KmetC*BW	; Metabolic rate constant from FLU to 50H FLU		
Kehc = KehcC*BW	; Enterohepatic circulation rate constant for FLU		
; Urinary Elimination Rate Constan	nts		
Kurine = KurineC*BW	; FLU		
Kurine1 = KurineC1*BW	; 50H FLU		
; Biliary Elimination Rate Constan	ts		
Kbile = KbileC*BW	; FLU		
Kbile1 = KbileC1*BW	; 50H FLU		
{Dosing}			
; Dosing calculation based on BW			
DOSEiv = PDOSEiv*BW	; (mg)		
DOSEsc = PDOSEsc*BW	; (mg)		
DOSEim = PDOSEim*BW	; (mg)		
; Dosing, repeated doses			
tinterval = 24	; Varied dependent on the exposure paradigm (h)		
Tdoses = 1	; times for multiple oral gavage		
Timeim $= 0.01$; IM injection time (h)		
Timesc = 0.01	; SC injection time (h)		
Timeiv $= 0.005$; IV infusion time (h)		
Fmultiple = if time < Tdoses*tinter	rval then 1 else 0		
; Dosing, IM, intramuscular			
IMR = DOSEim/(MW*Timeim)	; mmol/h		
Fim = IF MOD(time, tinterval) <=	Timeim then 1 else 0		
Rdoseim = IMR*Fim*Fmultiple	; mmol/h		
Rim = Kim*Amtsiteim	; Rim, drug absorption rate of intramuscular route (mmol/h)		
Rsiteim = RdoseIM -Rim	; Rsiteim, changing rate of drug at the intramuscular injection site (mmol/h)		
d/dt(Amtsiteim) = Rsiteim	; Amtsiteim, amount of the drug at the intramuscular injection site (mmol)		
init Amtsiteim = 0	; DOSEim, amount of the drug injected through intramuscular injection (mmol)		
d/dt(Absorbim) = Rim	; Absorbim, amount of drug absorbed by intramuscular injection (mmol)		
init Absorbim = 0			
; Dosing, SC, subcutaneous			
SCR = DOSEsc/(MW*Timesc)	; mmol/h		
Fsc = IF MOD(time, tinterval) <= '	Timesc then 1 else 0		
Rdosesc = SCR*Fsc*Fmultiple	; mmol/h		
$Rsc = Ksc^*Amtsitesc$; Rsc, drug absorption rate of subcutaneous route (mmol /h)		
Rsitesc =Rdosesc -Rsc	; Rsitesc, changing rate of drug at the subcutaneous injection site (mmol/h)		
d/dt(Amtsitesc) = Rsitesc	; Amtsitesc, amount of the drug at the subcutaneous injection site (mmol)		
init $Amtsitesc = 0$; DOSEsc, amount of the drug injected through subcutaneous injection (mmol)		
d/dt(Absorbsc) = Rsc	; Absorbsc, amount of drug absorbed by subcutaneous injection (mmol)		
init Absorbsc = 0			
; Dosing, IV, injection to the venou	IS		
IVR = DOSEiv/(MW*Timeiv)	; mmol/h, IVR rate of the drug through iv, Timeiv iv exposure time		
Fiv = IF MOD(time, tinterval) <= 7	Timeiv then 1 else 0		
Riv = IVR*Fiv*Fmultiple			

d/dt(Aiv) = Riv init Aiv = 0	
{Parent Drug (FLU) submodel {FLU distribution in each comp ; FLU in blood compartment CV = ((QL*CVL+QK*CVK+0) RA = QC*(CV-CAfree) d/dt(AA) = RA init AA = 0 CA = AA/Vblood d/dt(AUCCV) = CV	} partment} QF*CVF+QM*CVM+Qrest*CVrest+Rsc+Rim+Riv)/QC) ; mmol/L
init AUCCV = 0	
CAfree = CA*Free	
CVppm = CV*MW	; mg/L
; FLU in liver compartment, flo RL = QL*(CAfree-CVL)-Rme d/dt(AL) = RL init AL = 0 CL = AL/VL CVL= AL/VL CVL= AL/(VL*PL) d/dt(AUCCL) = CL init AUCCL = 0 CLppm = CL*MW	w-limited model -Rbile+Rehc ; RL, the changing rate of the amount of drug in liver (mmol/h) ; AL, the amount of drug in liver (mmol) ; CL, drug concentration in liver (mmol/L) ; CVL, drug concentration in venous blood from liver (mmol/L) ; AUCCL, area under the curve of drug concentration in liver (mmol*h/L) ; mg/L
11	
; Metabolism of FLU in liver c Rmet = Kmet*CL*VL d/dt(Amet) = Rmet init Amet = 0	ompartment ; Rmet, the metabolic rate from Flunixin to 5OH Flunixin in liver (mmol/h) ; Amet, the amount of 5OH FLU produced in liver (mmol)
; Biliary secretion of FLU Rbile = Kbile*CVL d/dt(Abile) = Rbile init Abile = 0	; Rbile, the biliary secretion rate of FLU (mmol/h) ; Abile, the amount of FLU through biliary secretion (mmol)
; FLU in GI compartments and	Enterohepatic Circulation
; Enterohepatic circulation of F Rehc = Kehc*AI ; Reh d/dt(Aehc) = Rehc ; Aeh init Aehc = 0	LU c, the changing rate of the amount of drug through enterohepatic circulation (mmol/h) c, the amount of drug through enterohepatic circulation (mmol)
; FLU in GI compartments Rcolon = Kint*AI d/dt(Acolon) = Rcolon init Acolon = 0	; Rcolon, the changing rate of the amount drug into colon (mmol/h) ; Acolon, amounts of the drug into the colon (mmol)
RAI = Rbile+Rbile1-Kint*AI-I d/dt(AI) = RAI init AI = 0 Rfeces = Kfeces*Acolon d/dt(Afeces) = Rfeces init Afeces = 0	Kehc*AI ; AI, amount of the drug in the intestine (mmol) ; RAI, the change rate of the amount of drug in intestine (mmol/h)
; FLU in kidney compartment, RK = QK*(CAfree-CVK)-Rur d/dt(AK) = RK	flow-limited model ne ; RK, the changing rate of the amount of drug in kidney (mmol/h) AK amount of drug in kidney (mmol)
·····	, ,

init $AK = 0$	
CK = AK/VK	; CK, drug concentration in kidney (mmol/L)
CVK = AK/(VK*PK)	
d/dt(AUCCK) = CK	; AUCCK, AUC of drug concentration in kidney (mmol*h/L)
init AUCCK $= 0$	
CKppm = CK*MW	; mg/L
: Urinary excretion of FLU	
Rurine = Kurine*CVK	: Rurine, the urinary secretion rate of FLU (mmol/h)
d/dt(Aurine) = Rurine	; Aurine, the amount of FLU through urinary secretion (mmol)
init Aurine = 0	
· FLU in muscle compartment flo	w-limited model
$RM = OM^*(CA free-CVM)$	· RM the changing rate of the amount of drug in muscle (mmol/h)
d/dt(AM) = RM	· AM amount of the drug in muscle (mmol)
init $AM = 0$, This, which is of the drug in muscle (initial)
CM = AM/VM	: CM. drug concentration in muscle (mmol/L)
CVM = AM/(VM*PM)	,, g
d/dt(AUCCM) = CM	; AUCCM, AUC of drug concentration in muscle (mmol*h/L)
init $AUCCM = 0$	
CMppm = CM*MW	; mg/L
· FLU in fat compartment flow-li	mited model
RF = OF*(CA free-CVF)	: RF, the changing rate of the amount of drug in fat (mmol/h)
d/dt(AF) = RF	: AF, amount of the drug in fat (mmol)
init $AF = 0$	
CF = AF/VF	; CF, drug concentration in fat (mmol/L)
CVF = AF/(VF*PF)	
d/dt(AUCCF) = CF	; AUCCF, AUC of drug concentration in fat (mmol*h/L)
init $AUCCF = 0$	
CFppm = CF*MW	; mg/L
: FLU in the compartment of rest	of body. flow-limited model
$Rrest = Orest^*(CAfree-CVrest)$: Rrest, the changing rate of the amount of drug in the rest of the body (mmol/h)
d/dt(Arest) = Rrest	; Arest, amount of the drug in the rest of the body (mmol)
init $Arest = 0$	
Crest = Arest/Vrest	; Crest, drug concentration in the rest of the body (mmol/L)
CVrest = Arest/(Vrest*Prest)	
d/dt(AUCCrest) = Crest	; AUCCrest, AUC of drug concentration in the rest of the body (mmol*h/L)
init AUCCrest = 0	
Crestppm = Crest*MW	; mg/L
{Metabolite (50H FLU) submode	41}
{50H FLU distribution in each co	ompartment}
; 50H FLU in blood compartment	t
CV1 = ((QL*CVL1+QK*CVK1+	Qrest1*CVrest1)/QC)
$RA1 = QC^{*}(CV1\text{-}CAfree1)$	
d/dt(AA1) = RA1	
init $AA1 = 0$	
CA1 = AA1/Vblood	
d/dt(AUCCV1) = CV1	
init $AUCCV1 = 0$	
CAfree1 = CA1*Free1	~
CV1ppm = CV1*MW1	; mg/L

; 50H FLU in liver compartment, flow-limited model

RL1 = QL*(CAfree1-CVL1)-Rbile1+Rmet ; RL1, the changing rate of the amount of 5OH FLU in liver (mmol/h) d/dt(AL1) = RL1; AL1, amount of 5OH FLU in liver (mmol) init AL1 = 0CL1 = AL1/VL; CL1, 5OH FLU concentration in liver (mmol/L) ; CVL1, 50H FLU concentration in venous blood from liver (mmol/L) CVL1 = AL1/(VL*PL1); AUCCL1, area under the curve of 5OH FLU concentration in liver (mmol*h/L) d/dt(AUCCL1) = CL1init AUCCL1 = 0CL1ppm = CL1*MW1; mg/L; Biliary secretion of 50H FLU Rbile1 = Kbile1*CVL1 ; Rbile1, the biliary secretion rate of 5OH FLU (mmol/h) d/dt(Abile1) = Rbile1; Abile1, the amount of 50H FLU through biliary secretion (mmol) init Abile1 = 0; 50H FLU in kidney compartment, flow-limited model RK1 = QK*(CAfree1-CVK1)-Rurine1; RK1, the changing rate of the amount of 5OH FLU in kidney (mmol/h) d/dt(AK1) = RK1; AK1, amount of 5OH FLU in kidney (mmol) init AK1 = 0CK1 = AK1/VK; CK1, concentration of 5OH FLU in kidney (mmol/L) CVK1 = AK1/(VK*PK1)d/dt(AUCCK1) = CK1; AUCCK1, AUC of 5OH FLU concentration in kidney (mmol*h/L) init AUCCK1 = 0CK1ppm = CK1*MW1; mg/L; Urinary excretion of 5OH FLU Rurine1 = Kurine1*CVK1 ; Rurine1, the urinary secretion rate of 5OH FLU (mmol/h) d/dt(Aurine1) = Rurine1; Aurine1, the amount of 5OH FLU through urinary secretion (mmol) init Aurine 1 = 0; 50H FLU in the compartment of rest of body, flow-limited model Rrest1 = Qrest1*(CAfree1-CVrest1); Rrest1, the changing rate of the amount of 5OH FLU in the rest of the body (mmol/h) d/dt(Arest1) = Rrest1; Arest1, amount of 5OH FLU in the rest of the body (mmol) init Arest1 = 0Crest1 = Arest1/Vrest1 ; Crest1, 50H FLU concentration in the rest of the body (mmol/L) CVrest1 = Arest1/(Vrest1*Prest1)d/dt(AUCCrest1) = Crest1; AUCCrest1, AUC of 5OH FLU concentration in the rest of the body (mmol*h/L) init AUCCrest1 = 0Crest1ppm = Crest1*MW1 ; mg/L {Mass balance equations} ; Mass balance equations for FLU Qbal = QC-QM-Qrest-QF-QK-QL Tmass = AA+AM+Arest+AF+AK+AL+Aurine+Amet+Abile Input = Aiv+Absorbim+Absorbsc+Aehc Bal = Input-Tmass ; Mass balance equations for 5OH FLU Qbal1 = QC-QL-QK-Qrest1 Tmass1 = AA1 + Arest1 + AK1 + AL1 + Aurine1 + Abile1Input1 = AmetBal1 = Input1-Tmass1

Population PBPK Model for Flunixin in Cattle using Berkeley Madonna

{

Flunixin PBPK model for Cattle (flow-limited model, linear metabolism equation, plasma protein binding) The PBPK model code is based on the penicillin G model from Li et al. 2017

METHOD RK4 STARTTIME = 0; h STOPTIME= 500 DT = 0.00025DTOUT = 0.1{Physiological Parameters} ; Blood Flow Rates OCC = 5.970; L/h/kg, Cardiac Output (1960 Doyle) ; Fracion of blood flow to organs (unitless) OLC = 0.405; Fraction of blood flow to the liver (1996 Lescoat, 1960 Dlyle) QKC = 0.090; Fraction of blood flow to the kidneys (2016 Lin) QMC = 0.180; Fraction of blood flow to the muscle (2016 Lin) ; Fraction of blood flow to the fat (2016 Lin) OFC = 0.080QrestC = 1-QLC-QKC-QFC-QMC; Fraction of blood flow to the rest of body (total sum equals to 1) QrestC1 = 1-QLC-QKC; Tissue Volumes BW = 300; Body Weight (kg) ; Fractional organ tissue volumes (unitless) VLC = 0.014; Fractional liver tissue (1933 Swett) VKC = 0.002; Fractional kidney tissue (1933 Swett) ; Fractional fat tissue (2016 Lin, 2014 Leavens) VFC = 0.150VMC = 0.270; Fractional muscle tissue (2016 Lin, 2014 Leavens) VvenC = 0.030; Venous blood volume, fraction of blood volume (2016 Lin; 2008 Leavens) : Arterial blood volume, fraction of blood volume (2016 Lin: 2008 Leavens) VartC = 0.010VbloodC = VvenC+VartC VrestC = 1-VLC-VKC-VFC-VMC-VvenC-VartC; Fractional rest of body (total sum equals to 1) VrestC1 = 1-VLC-VKC-VvenC-VartC {Mass Transfer Parameters (Chemical-Specific Parameters) prediction} ; Flunixin and 50H Flunixin Molecular Weight MW = 296.24; mg/mmol MW1 = 312.24; mg/mmol ; Partition Coefficients for FLU (PC, tissue:plasma) PL = 10.52; Liver:plasma PC PK = 4; Kidney:plasma PC PM = 0.5; Muscle:plasma PC PF = 0.6; Fat:plasma PC Prest = 8; Rest of body:plasma PC (average from all other partition coefficients) ; Partition Coefficients for 5OH FLU (PC, tissue:plasma) PL1 = 9.26; Liver:plasma PC PK1 = 4; Kidney:plasma PC Prest1 = 5; Rest of body:plasma PC

{Kinetic Constants} · Rate Constants in GL compartmer	its
$K_{int} = 0.4$: /h intestinal transit rate constant
Kint 0.4 K feces = 0.5	: /h. fecal elimination rate constant
	, in, recur channation rate constant
: IM Absorption Rate Constants	
Kim = 0.5	: /h. IM absorption rate constant
; SC Absorption Rate Constants	
Ksc = 0.4	; /h, SC absorption rate constant
; Percentage Plasma Protein Bindir	ng unitless
PB = 0.95	; Percentage of drug bound to plasma proteins
PB1 = 0.99	
{Metabolic Rate Constant}	
KmetC = 0.2	; /h/kg, metabolic rate constant for 5OH FLU
KehcC = 0.05	; /h/kg, rate constant for the enterohepatic circulation
; Urinary Elimination Rate Constar	nts
KurineC = 0.1	; $L/h/kg$
KurineC1 = 0.200	; L/h/Kg
· Diliam Elimination Data Constata	
; Binary Emmination Rate Constats $K_{bilaC} = 0.500$	· I /b/ka
KbileC = 0.500	L/h/kg
Konce 1 = 0.100	, L/II/Kg
{Parameters for Various Exposure	Scenarios}
PDOSE $= 2.2$	· (mg/kg)
PDOSEsc = 0	· (mg/kg)
PDOSEim = 0	: (mg/kg)
	,(88)
{Variances of Parameters}	
limit BWm >= 209.45	
limit BWm <= 390.464	
limit QCCm ≥ 2.07	
limit QCCm <= 9.87	
limit VartCm >= 0.004	
limit VartCm <= 0.017	
limit VvenCm ≥ 0.012	
limit VartCm <= 0.047	
limit VLCm ≥ 0.010	
limit VLCm <= 0.017	
limit VKCm ≥ 0.002	
limit VKCm <= 0.003	
$\lim_{n \to \infty} VMCm \ge 0.111$	
limit VMCm ≤ 0.429	
$\lim_{n \to \infty} VFCm \ge 0.062$	
limit VFCm ≤ 0.238	
limit VrestCm ≥ 0.216	
limit VrestCm ≤ 0.832	
limit OI $C_{m} > = 0.024$	
limit QLCm ≥ 0.024	
$\min QLCm \le 0.783$	

limit QKCm ≥ 0.037 limit QKCm ≤ 0.143 limit QMCm ≥ 0.074 limit QMCm ≤ 0.286 limit QFCm ≥ 0.033 limit QFCm ≤ 0.127 limit QrestCm ≥ 0.101 limit QrestCm ≤ 0.390
limit Kimm >= 0.269 limit Kimm <= 0.851 limit Kscm >= 0.216 limit Kscm <= 0.681
limit PLm >= 6.997 limit PLm <= 15.208 limit PKm >= 2.661 limit PKm <= 5.783 limit PMm >= 0.333 limit PMm <= 0.723 limit PFm >= 0.399 limit PFm <= 0.867 limit Prestm >= 5.321 limit Prestm <= 11.565 limit PL1m >= 6.159 limit PL1m <= 13.387 limit PK1m >= 2.661 limit PK1m >= 3.326 limit Prest1m <= 7.228
limit KmetCm >= 0.133 limit KmetCm <= 0.289 limit KehcCm >= 0.027 limit KehcCm <= 0.085 limit PBm >= 0.5118 limit PBm <= 0.99 limit PB1m >= 0.5334 limit PB1m <= 0.99
limit KbileCm ≥ 0.269 limit KbileCm ≤ 0.851 limit KbileC1m ≥ 0.054 limit KbileC1m ≥ 0.054 limit KurineCm ≥ 0.054 limit KurineC1m ≥ 0.170 limit KurineC1m ≥ 0.108 limit KurineC1m ≤ 0.341 limit Kintm ≥ 0.216 limit Kintm ≤ 0.681 limit Kintm ≤ 0.681 limit Kfecesm ≥ 0.269 limit Kfecesm ≤ 0.851
BW_sd = 46.180 QCC_sd = 1.99 VartC_sd = 3.12e-3

; Standard Deviation of Body Weight ; Standard Deviation of QCC VvenC sd = 8.88e-3VLC sd = 1.63e-3 $VKC_{sd} = 4.321e-4$ VMC sd = 8.1e-2VFC sd = 4.5e-2VrestC sd = 0.1572QLC sd = 0.1942QKC sd = 0.027; Standard Deviation of QKC QMC sd = 0.054 QFC sd = 0.024QrestC sd = 0.0736Kim sd = 0.15; Standard Deviation of Kim Ksc sd = 0.12PL sd = 2.104 ; Standard Deviation of PL PK sd = 0.8; Standard Deviation of PK PM sd = 0.1PF sd = 0.12Prest sd = 1.6PL1 sd = 1.852 ; Standard Deviation of PL1 $PK1_sd = 0.8$; Standard Deviation of PK1 Prest1 sd = 1KmetC sd = 0.04KehcC sd = 0.015PB sd = 0.285 PB1 sd = 0.297 KbileC sd = 0.15KbileC1 sd = 0.03KurineC sd = 0.03KurineC1 sd = 0.06Kint sd = 0.12Kfeces_sd = 0.15{Generation of Parameters based on Normal Distribution} ; Generation of Parameters based on Normal Distribution init BWm = Normal(BW, BW sd) ; Generation of BWm based on normal distribution init QCCm = Normal(QCC, QCC sd) ; Generation of the QCCm based on normal distribution init VartCm = Normal(VartC, VartC sd) init VvenCm = Normal(VvenC, VvenC sd) init VLCm = Normal(VLC, VLC sd) init VKCm = Normal(VKC, VKC sd) init VMCm = Normal(VMC, VMC sd) init VFCm = Normal(VFC, VFC sd) init VrestCm = Normal(VrestC, VrestC sd) init QLCm = Normal(QLC, QLC sd) init OKCm = Normal(OKC, OKC sd); Generation of the OKCm based on normal distribution init QMCm = Normal(QMC, QMC sd) init QFCm = Normal(QFC, QFC sd) init QrestCm = Normal(QrestC, QrestC sd) ; Assignment of the Values to Parameters next QCCm = QCCm; Assignment of the first created value to QCCm, without this step QCCm will change at each integration time step next BWm=BWm;

; Creation of Adjust Factor AdjustF = QLCm+QKCm+QFCm+QMCm+QrestCm ; Adjust factor to keep the sum of blood flow fractions to 1 AdjustF1 = VartCm+VvenCm+VLCm+VKCm+VFCm+VMCm+VrestCm

; Creation of Adjusted Parameters next QLCm = QLCm/AdjustF next QKCm = QKCm/AdjustF next QFCm = QFCm/AdjustF next QMCm = QMCm/AdjustF next QrestCm = QrestCm/AdjustF QrestC1m = 1-QLCm-QKCm

next VartCm = VartCm/AdjustF1 next VvenCm = VvenCm/AdjustF1 next VLCm = VLCm/AdjustF1 next VKCm = VKCm/AdjustF1 next VFCm = VFCm/AdjustF1 next VMCm = VMCm/AdjustF1 next VrestCm = VrestCm/AdjustF1 VbloodCm = VartCm+VvenCm VrestC1m = 1-VbloodCm-VLCm-VKCm

{Lognormal Transformation of Parameters} Kim $\ln = \log_1(Kim^2/(Kim sd^2+Kim^2)^{0.5})$ Kim $lnsd = (logn(1+Kim sd^2/Kim^2))^{0.5}$ Ksc $\ln = \log n (Ksc^2/(Ksc sd^2+Ksc^2)^{0.5})$ Ksc $lnsd = (logn(1+Ksc sd^2/Ksc^2))^{0.5}$ PL $\ln = \log(PL^{2}/(PL \ sd^{2}+PL^{2})^{0.5})$ PL $lnsd = (logn(1+PL sd^2/PL^2))^{0.5}$ PK $\ln = \log (PK^2/(PK \ sd^2+PK^2)^{0.5})$ PK $lnsd = (logn(1+PK sd^2/PK^2))^{0.5}$ $PM_ln = logn(PM^2/(PM_sd^2+PM^2)^{0.5})$ PM $lnsd = (logn(1+PM sd^2/PM^2))^{0.5}$ PF $\ln = \log (PF^2/(PF \ sd^2+PF^2)^0.5)$ PF lnsd = (logn(1+PF sd^2/PF^2))^0.5 Prest $\ln = \log (\operatorname{Prest}^2/(\operatorname{Prest} \operatorname{sd}^2 + \operatorname{Prest}^2)^{0.5})$ Prest $lnsd = (logn(1+Prest sd^2/Prest^2))^{0.5}$ PL1 $\ln = \log(PL1^2/(PL1 \text{ sd}^2+PL1^2)^{0.5})$ PL1 $lnsd = (logn(1+PL1 sd^2/PL1^2))^{0.5}$ PK1 $\ln = \log(PK1^2/(PK1 \text{ sd}^2+PK1^2)^0.5)$ PK1 lnsd = (logn(1+PK1 sd^2/PK1^2))^0.5 $Prest1 \quad ln = logn(Prest1^2/(Prest1_sd^2+Prest1^2)^0.5)$ $Prest1 lnsd = (logn(1+Prest1 sd^{2}/Prest1^{2}))^{0.5}$ KmetC $\ln = \logn(KmetC^2/(KmetC sd^2+KmetC^2)^{0.5})$ KmetC lnsd = $(logn(1+KmetC sd^2/KmetC^2))^{0.5}$ KehcC ln = logn(KehcC^2/(KehcC sd^2+KehcC^2)^{0.5}) KehcC lnsd = $(\log n(1 + KehcC sd^2/KehcC^2))^{0.5}$ PB $\ln = \log (PB^2/(PB \ sd^2+PB^2)^{0.5})$ PB $lnsd = (logn(1+PB sd^2/PB^2))^{0.5}$ PB1 $\ln = \log(PB1^2/(PB1 \text{ sd}^2+PB1^2)^0.5)$ PB1 $lnsd = (logn(1+PB1 sd^2/PB1^2))^{0.5}$ KbileC $\ln = \log n (KbileC^2/(KbileC sd^2+KbileC^2)^{0.5})$ $KbileC_lnsd = (logn(1+KbileC_sd^2/KbileC^2))^{0.5}$ KbileC1 $\ln = \logn(KbileC1^2/(KbileC1 sd^2+KbileC1^2)^{0.5})$ KbileC1 lnsd = $(logn(1+KbileC1 sd^2/KbileC1^2))^{0.5}$ KurineC $\ln = \log_{KurineC^2}/(KurineC sd^2+KurineC^2)^{0.5})$

; Adjustment of QLCm based on the adjust factor

; Adjustment of QKCm

; Adjustment of QFCm

; Adjustment of QMCm

; Adjustment of QrestCm

; Lognormal transformation of Kim value ; Lognormal transformation of Ksc value ; Lognormal transformation of PL values ; Lognormal transformation of PK values ; Lognormal transformation of PM values ; Lognormal transformation of PF values ; Lognormal transformation of Prest values ; Lognormal transformation of PL1 values ; Lognormal transformation of PK1 values ; Lognormal transformation of Prest1 values ; Lognormal transformation of KmetC ; Lognormal transformation of KehcC ; Lognormal transformation of PB ; Lognormal transformation of PB1 ; Lognormal transformation of KbileC ; Lognormal transformation of KbileC1 ; Lognormal transformation of KurineC

KurineC lnsd = $(logn(1+KurineC sd^2/KurineC^2))^{0.5}$ KurineC1 ln = logn(KurineC1 $^2/(KurineC1 d^2+KurineC1^2)^{0.5}$; Lognormal transformation of KurineC1 KurineC1 lnsd = $(logn(1+KurineC1 sd^2/KurineC1^2))^{0.5}$ Kint $\ln = \log_1(Kint^2/(Kint sd^2+Kint^2)^{0.5})$; Lognormal transformation of Kint Kint $lnsd = (logn(1+Kint sd^2/Kint^2))^{0.5}$ Kfeces $\ln = \log_{K_{feces}^2}/(K_{feces} sd^2+K_{feces}^2)^{0.5})$; Lognormal transformation of Kfeces Kfeces $lnsd = (logn(1+Kfeces sd^2/Kfeces^2))^{0.5}$ {Creation of Parameters based on Lognormal Distribution} init Kimm = exp(Normal(Kim ln, Kim lnsd)) next Kimm = Kimm ; Generation of Kimm init Kscm = exp(Normal(Ksc ln, Ksc lnsd)) next Kscm = Kscm ; Generation of Kscm init PLm = exp(Normal(PL ln, PL lnsd)) next PLm = PLm ; Generation of PLm based on lognormal distribution init PKm = exp(Normal(PK ln, PK lnsd)) next PKm = PKm; Generation of PKm init PMm = exp(Normal(PM ln, PM lnsd)) next PMm = PMm ; Generation of PMm init PFm = exp(Normal(PF ln, PF lnsd)) next PFm = PFm: Generation of PFm init Prestm = exp(Normal(Prest ln, Prest lnsd)) next Prestm = Prestm : Generation of Prestm init PL1m = exp(Normal(PL1 ln, PL1 lnsd)) next PL1m = PL1m ; Generation of PL1m based on lognormal distribution init PK1m = exp(Normal(PK1 ln, PK1 lnsd)) next PK1m = PK1m ; Generation of PK1m init Prest1m = exp(Normal(Prest1_ln, Prest1_lnsd)) next Prest1m = Prest1m ; Generation of Prest1m init KmetCm = exp(Normal(KmetC ln, KmetC lnsd)) next KmetCm = KmetCm ; Generation of KmetCm init KehcCm = exp(Normal(KehcC ln, KehcC lnsd)) next KehcCm = KehcCm ; Generation of KehcCm init PBm = exp(Normal(PB ln, PB lnsd)) next PBm = PBm ; Generation of PBm init PB1m = exp(Normal(PB1 ln, PB1 lnsd)) next PB1m = PB1m ; Generation of PB1m init KbileCm = exp(Normal(KbileC ln, KbileC lnsd)) next KbileCm = KbileCm ; Generation of KbileCm init KbileC1m = exp(Normal(KbileC1 ln, KbileC1 lnsd)) next KbileC1m = KbileC1m ; Generation of KbileC1m init KurineCm = exp(Normal(KurineC ln, KurineC lnsd)) next KurineCm = KurineCm ; Generation of KurineCm init KurineC1m = exp(Normal(KurineC1 ln, KurineC1 lnsd)) next KurineC1m = KurineC1m; Generation of KurineC1m init Kintm = exp(Normal(Kint ln, Kint lnsd)) next Kintm = Kintm ; Generation of Kintm init Kfecesm = exp(Normal(Kfeces ln, Kfeces lnsd)) next Kfecesm = Kfecesm ; Generation of Kfecesm Free = 1 - PBmFree 1 = 1 - PB1m{Cardiac output and blood flow to tissues (L/h)} OC = OCCm*BWm: Cardiac output ; Liver QL = QLCm*QCQK = QKCm*QC; Kidney $QF = QFCm^*QC$: Fat $QM = QMCm^*QC$; Muscle Qrest = QrestCm*QC ; Rest of body Qrest1 = QrestC1m*QC{Tissue volumes (L)} VL = VLCm*BWm; Liver VK = VKCm*BWm ; Kidney VF = VFCm*BWm; Fat VM = VMCm*BWm : Muscle Vrest = VrestCm*BWm ; Rest of body Vven = VvenCm*BWm ; Venous Blood Vart = VartCm*BWm : Arterial Blood Vblood = VbloodCm*BWm Vrest1 = VrestC1m*BWm ; Metabolic rate constant Kmet = KmetCm*BWm ; Metabolic rate constant for 5OH FLU

Kehc = KehcCm*BWm

; Urinary Elimination Rate Constants Kurine = KurineCm*BWm Kurine1 = KurineC1m*BWm ; Biliary Elimination Rate Constants Kbile = KbileCm*BWm Kbile1 = KbileC1m*BWm {Dosing} ; Dosing caculation based on BW DOSEiv = PDOSEiv*BWm ; (mg) DOSEsc = PDOSEsc*BWm ; (mg) DOSEim = PDOSEim*BWm ; (mg) ; Dosing, repeated doses tinterval = 24; Varied dependent on the exposure paradigm (h) Tdoses = 3; times for multiple oral gavage Timeim = 0.01; IM injection time (h) Timesc = 0.01; SC injection time (h) Time v = 0.005; IV infusion time (h)

Fmultiple = if time < Tdoses*tinterval then 1 else 0

; Dosing, IM, intramuscular	
IMR = DOSEim/(MW*Timeim)	; mmol/h
Fim = IF MOD(time, tinterval) <=	Timeim then 1 else 0
Rdoseim = IMR*Fim*Fmultiple	; mmol/h
Rim = Kim*Amtsiteim	; Rim drug absorption rate of intramuscular route (mg/h)
Rsiteim = RdoseIM -Rim	; Rsiteim changing rate of drug at the intramuscular injection site (mg/h)
d/dt(Amtsiteim) = Rsiteim	; Amtsiteim amounts of the drug at the intramuscular injection site (mg)
init Amtsiteim $= 0$; DOSEim amounts of the drug injected through intramuscular injection (mg)
d/dt(Absorbim) = Rim	; Absorbim amount of drug absorbed by intramuscular injection (mg)
init Absorbim = 0	

; Dosing, SC, subcutaneous	
SCR = DOSEsc/(MW*Timesc)	; mmol/h
Fsc = IF MOD(time, tinterval) <=	Timesc then 1 else 0
Rdosesc = SCR*Fsc*Fmultiple	; mmol/h
Rsc = Ksc*Amtsitesc	; Rsc drug absorption rate of subcutaneous route (mg/h)
Rsitesc =Rdosesc -Rsc	; Rsitesc changing rate of drug at the subcutaneous injection site (mg/h)
d/dt(Amtsitesc) = Rsitesc	; Amtsitesc amounts of the drug at the subcutaneous injection site (mg)
init Amtsitesc $= 0$; DOSEsc amounts of the drug injected through subcutaneous injection (mg)
d/dt(Absorbsc) = Rsc	; Absorbsc amount of drug absorbed by subcutaneous injection (mg)
init $Absorbsc = 0$	

; Dosing, IV, injection to the venous IVR = DOSEiv/(MW*Timeiv) ; mmol/h, IVR rate of the drug through iv, Timeiv iv exposure time Fiv = IF MOD(time, tinterval) <= Timeiv then 1 else 0 Riv = IVR*Fiv*Fmultiple d/dt(Aiv) = Riv init Aiv = 0

{FLU and 5OH FLU distribution in each compartment}

; FLU and 5OH FLU in venous blood compa CV = ((QL*CVL+QK*CVK+QF*CVF+QN RA = QC*(CV-CAfree) d/dt(AA) = RA init AA = 0 CA = AA/Vblood d/dt(AUCCV) = CV init AUCCV = 0 CAfree = CA*Free CVppm = CV*MW	artment 4*CVM+Qrest*CVrest+Rsc+Rim+Riv)/QC) ; mmol/L ; mg/L
CV1 = ((OL * CVL) + OK * CVK) + Orest + CV	Vrest1)/OC)
$RA1 = QC^*(CV1-CAfree1)$ d/dt(AA1) = RA1 init AA1 = 0 CA1 = AA1/Vblood d/dt(AUCCV1) = CV1 init AUCCV1 = 0	
CAfree1 = CA1*Free1	
CV1ppm = CV1*MW1	; mg/L
; FLU and 5OH FLU in liver compartment, RL = QL*(CAfree-CVL)-Rmet1-Rbile+Reh	flow-limited model ; RL the changing rate of the amount of drug in liver (mmol/h)
d/dt(AL) = RL init $AL = 0$; AL amount of drug in liver (mmol)
CL = AL/VL $CVL = AL/(VL*PLm)$ $(mmel/L)$; CL drug concentration in liver (mmol/L) ; CVL drug concentration in venous blood from liver
d/dt(AUCCL) = CL (mmol*h/L) init AUCCL = 0	; AUCCL area under the curve of drug concentration in liver
CLppm = CL*MW	; mg/L
RL1 = QL*(CAfree1-CVL1)-Rbile +Rmet1 d/dt(AL1) = RL1 init AL1 = 0	; RL the changing rate of the amount of drug in liver (mmol/h) ; AL amount of drug in liver (mmol)
CL1 = AL1/VL	; CL drug concentration in liver (mmol/L)
CVL1= AL1/(VL*PL1m) d/dt(AUCCL1) = CL1 (mmol*h/L) init AUCCL1 = 0	; CVL drug concentration in venous blood from liver (mmol/L) ; AUCCL area under the curve of drug concentration in liver
CL1ppm = CL1*MW1	; mg/L
Rehc = Kehc*AI d/dt(Aehc) = Rehc init Aehc = 0	
; GI compartments and Enterohepatic Circul	ation
Rcolon = Kintm*AI d/dt(Acolon) = Rcolon init Acolon = 0	; Recolon the changing rate of the amount drug into colon (mg/h) ; Acolon amounts of the drug into the colon (mg)
RAI = Rbile+Rbile1-Kintm*AI-Kehc*AI $d/dt(AI) = RAI$ init AI = 0	; AI amount of the drug in the intestine (mg) ; RAI the change rate of the amount of drug in intestine (mg/h)
Rfeces = Kfecesm*Acolon d/dt(Afeces) = Rfeces	

; Metabolism of FLU in liver compartment Rmet1 = Kmet*CL*VL; Rmet the metabolic rate of 50H Flunixin in liver (mmol/h) d/dt(Amet1) = Rmet1; Amet the amount of 50H FLU metabolized in liver (mmol) init Amet 1 = 0Rbile = Kbile*CVL d/dt(Abile) = Rbileinit Abile = 0Rbile1 = Kbile1*CVL1d/dt(Abile1) = Rbile1init Abile1 = 0; FLU and 5OH FLU in kidney compartment, flow-limited model RK = QK*(CAfree-CVK)-Rurine ; RK the changing rate of the amount of drug in kidney (mmol/h) d/dt(AK) = RK; AK amount of drug in kidney (mmol) init AK = 0CK = AK/VK; CK drug concentration in kidney (mmol/L) CVK = AK/(VK*PKm); AUCCK AUC of drug concentration in kidney (mmol*h/L) d/dt(AUCCK) = CKinit AUCCK = 0CKppm = CK*MW; mg/L RK1 = QK*(CAfree1-CVK1)-Rurine1 ; RK the changing rate of the amount of drug in kidney (mmol/h) d/dt(AK1) = RK1; AK amount of drug in kidney (mmol) init AK1 = 0CK1 = AK1/VK; CK drug concentration in kidney (mmol/L) CVK1 = AK1/(VK*PK1m); AUCCK AUC of drug concentration in kidney (mmol*h/L) d/dt(AUCCK1) = CK1init AUCCK1 = 0CK1ppm = CK1*MW1 ; mg/L ; FLU and 5OH FLU urinary excretion Rurine = Kurine*CVK d/dt(Aurine) = Rurineinit Aurine = 0Rurine1 = Kurine1*CVK1 d/dt(Aurine1) = Rurine1init Aurine1 = 0; FLU and 5OH FLU in muscle compartment, flow-limited model $RM = QM^{*}(CAfree-CVM)$; RM the changing rate of the amount of drug in muscle (mmol/h) ; AM amount of the drug in muscle (mmol) d/dt(AM) = RMinit AM = 0CM = AM/VM; CM drug concentration in muscle (mmol/L) CVM = AM/(VM*PMm)d/dt(AUCCM) = CMinit AUCCM = 0CMppm = CM*MW; mg/L ; FLU and 5OH FLU in fat compartment, flow-limited model ; RF the changing rate of the amount of drug in fat (mmol/h) $RF = QF^{*}(CAfree-CVF)$ d/dt(AF) = RF; AF amount of the drug in fat (mmol)

init Afeces = 0

init $AF = 0$				
CF = AF/VF	: CF drug concentration in fat (mmol/L)			
CVF = AF/(VF*PFm)				
d/dt(AUCCF) = CF	: AUCCF AUC of drug concentration in fat (mmol*h/L)			
init AUCCF = 0	,			
CFppm = CF*MW	; mg/L			
: FLU and 5OH FLU in the compar	rtment of rest of body. flow-limited model			
$Rrest = Orest^*(CAfree-CVrest)$: Rrest the changing rate of the amount of drug in the rest of the body (mmol/h)			
d/dt(Arest) = Rrest	: Arest amount of the drug in the rest of the body (mmol)			
init Arest = 0				
Crest = Arest/Vrest	· Crest drug concentration in the rest of the body (mmol/L)			
CVrest = Arest/(Vrest*Prestm)	, crest and concentration in the rest of the body (minor L)			
d/dt(AIICCrest) = Crest	: AUCCrest AUC of drug concentration in the rest of the body (mmol* h/I)			
init AUCCrest = 0	, No corest No c of drug concentration in the rest of the body (nintor in E)			
Crestppm = Crest*MW	; mg/L			
Rrest1 = Orest1*(CAfree1-CVrest)	• Rrest the changing rate of the amount of drug in the rest of the body			
(mmol/h)	, rest the changing rate of the amount of arag in the rest of the body			
d/dt(Arest1) = Rrest1	· Arest amount of the drug in the rest of the body (mmol)			
init Arest $1 = 0$, rest unione of the drug in the rest of the body (minor)			
Crest1 = Arest1/Vrest1	: Crest drug concentration in the rest of the body (mmol/L)			
$CVrest1 = \Delta rest1/(Vrest1*Prest1m)$)			
d/dt(AIICCrest1) = Crest1	· AUCCrest AUC of drug concentration in the rest of the body (mmol*h/L)			
d/dt(AOCCrest1) = 0	, Accelest Acc of drug concentration in the rest of the body (minor in L)			
Crest1nnm = Crest1*MW	· mg/I			
crescippin cresci ww	, mg/L			
{Mass balance equations}				
· Mass balance equations for FLU				
Obal = OC - OM - Orest - OF - OK - OI				
Volume = V - V - V - V - V - V - V - V - V - V				
I = Aiv + Aivi + Aicsi + Af + Ak + Ak + Aifilit + Aifit + Affit + Af				
Input – AIV+AUSOIDIIII+AUSOIDSC+ACIC				
Bai – Input-Tillass				
; Mass balance equations for 5OH	FLU			
Obal1 = OC-OL-OK-Orest1				
Tmass1 = AA1 + Arest1 + AK1 + AL1 + Aurine1 + Abile1				
Input1 = Amet1				
Bal1 = Input1-Tmass1				

References

- Buur, J. L., Baynes, R. E., Craigmill, A. L., & Riviere, J. E. (2005). Development of a physiologic-based pharmacokinetic model for estimating sulfamethazine concentrations in swine and application to prediction of violative residues in edible tissues. American Journal of Veterinary Research, 66(10), 1686-1693.
- Leavens, T. L., Tell, L. A., Kissell, L. W., Smith, G. W., Smith, D. J., Wagner, S. A., Shelver W. L., Wu H., Baynes R. E., & Riviere, J. E. (2014). Development of a physiologically based pharmacokinetic model for flunixin in cattle (Bos taurus). Food Additives & Contaminants: Part A, 31(9), 1506-1521.
- Li, M., Gehring, R., Riviere, J. E., & Lin, Z. (2017). Development and application of a population physiologically based pharmacokinetic model for penicillin G in swine and cattle for food safety assessment. Food and Chemical Toxicology, 107, 74-87.
- Lin, Z., Vahl, C. I., & Riviere, J. E. (2016). Human Food Safety Implications of Variation in Food Animal Drug Metabolism. Scientific Reports, 6, 27907.
- Rodgers, T., & Rowland, M. (2006). Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. Journal of Pharmaceutical Sciences, 95(6), 1238-1257.
- Ruark, C. D., Hack, C. E., Robinson, P. J., Mahle, D. A., & Gearhart, J. M. (2014).
 Predicting Passive and Active Tissue:Plasma Partition Coefficients: Interindividual and Interspecies Variability. Journal of Pharmaceutical Sciences, 103(7), 2189-2198.
- Skidmore, A., Roder J., Van De Ven J., Cloet P., & Montgomery A. Flunixin meglumine (Finadyne®, Banamine®) in pain management of cattle: pharmacology and applications,

proceedings XXV World Buiatrics Congress, July 6-11, 2008, Budapest, Hungary, pp293.

- Thiry, J., Fournier, R., Roy, O., & Catala, M. (2017). Evaluation of flunixin meglumine pour-on administration on prostaglandin E2 concentration in inflammatory exudate after induction of inflammation in cattle. Research in Veterinary Science, 114, 294-296.
- Lin, Z., Jaberi-Douraki, M., He, C., Jin, S., Yang, R. S., Fisher, J. W., & Riviere, J. E. (2017). Performance Assessment and Translation of Physiologically Based Pharmacokinetic Models From acslX to Berkeley Madonna, MATLAB, and R Language: Oxytetracycline and Gold Nanoparticles As Case Examples. Toxicological Sciences, 158(1), 23-35.
- Li, M., Gehring, R., Riviere, J. E., & Lin, Z. (2018). Probabilistic Physiologically Based Pharmacokinetic Model for Penicillin G in Milk From Dairy Cows Following Intramammary or Intramuscular Administrations. Toxicological Sciences, 164(1), 85-100.
- 11. Lin, Z., Li, M., Gehring, R., Riviere, J. E. (2015). Development and application of a multiroute physiologically based pharmacokinetic model for oxytetracycline in dogs and humans. Journal of Pharmaceutical Sciences, 104(1), 233-243.
- Sams, R., Gerken, D., & Ashcraft, S. (1999). Detection and identification of flunixin after multiple intravenous and intramuscular doses to horses. Journal of Analytical Toxicology, 23(5), 372-379.
- Jedziniak, P., Olejnik, M., Szprengier-Juszkiewicz, T., Smulski, S., Kaczmarowski, M.,
 & Żmudzki, J. (2013). Identification of flunixin glucuronide and depletion of flunixin and

its marker residue in bovine milk. Journal of Veterinary Pharmacology and Therapeutics, 36(6), 571-575.

- 14. Wasfi, I. A., Boni, N. S., Abdel Hadi, A. A., ElGhazali, M., Zorob, O., Alkatheeri, N. A., & Barezaiq, I. M. (1998). Pharmacokinetics, metabolism and urinary detection time of flunixin after intravenous administration in camels. Journal of Veterinary Pharmacology and Therapeutics, 21(3), 203-208.
- 15. Malik, M. Y., Jaiswal, S., Sharma, A., Shukla, M., & Lal, J. (2016). Role of enterohepatic recirculation in drug disposition: cooperation and complications. Drug Metabolism Reviews, 48(2), 281-327.
- 16. FDA. (1998). Freedom of Information . NADA 101-479. BANAMINE (flunixin meglumine) Injectable Solution. Silver Spring, MD: U.S. Food and Drug Administration. <u>https://wayback.archive-</u>

it.org/7993/20170406083138/https://www.fda.gov/downloads/AnimalVeterinary/Product s/ApprovedAnimalDrugProducts/FOIADrugSummaries/ucm064905.pdf

- Odensvik, K., & Johansson, I. M. (1995). High-performance liquid chromatography method for determination of flunixin in bovine plasma and pharmacokinetics after single and repeated doses of the drug. American Journal of Veterinary Research, 56(4), 489-495.
- 18. Shelver, W. L., Tell, L. A., Wagner, S., Wetzlich, S. E., Baynes, R. E., Riviere, J. E., & Smith, D. J. (2013). Comparison of ELISA and LC-MS/MS for the measurement of flunixin plasma concentrations in beef cattle after intravenous and subcutaneous administration. Journal of Agricultural and Food Chemistry, 61(11), 2679-2686.

- Odensvik, K. (1995). Pharmacokinetics of flunixin and its effect on prostaglandin F2 alpha metabolite concentrations after oral and intravenous administration in heifers. Journal of Veterinary Pharmacology and Therapeutics, 18(4), 254-259.
- 20. Howard, J. T., Baynes, R. E., Brooks, J. D., Yeatts, J. L., Bellis, B., Ashwell, M. S., Routh, P., O'Nan, A. T., & Maltecca, C. (2014). The effect of breed and sex on sulfamethazine, enrofloxacin, fenbendazole and flunixin meglumine pharmacokinetic parameters in swine. Journal of Veterinary Pharmacology and Therapeutics, 37(6), 531-541.
- Pairis-Garcia, M. D., Karriker, L. A., Johnson, A. K., Kukanich, B., Wulf, L., Sander, S., Stalder K. J., & Coetzee, J. F. (2013). Pharmacokinetics of flunixin meglumine in mature swine after intravenous, intramuscular and oral administration. BMC Veterinary Research, 9(1), 165.
- 22. FDA. (2005). Freedom of Information . NADA 101-479. BANAMINE-S (flunixin meglumine) Injectable Solution. Silver Spring, MD: U.S. Food and Drug Administration. <u>https://animaldrugsatfda.fda.gov/adafda/app/search/public/document/downloadFoi/356</u>.
- Mirzaei, H.R., Pitchford, W.S., Verbyla, A.P. (2011). Modeling of crossbred cattle growth, comparison between cubic and piecewise random regression models. Genet. Mol. Res. 10, 2230-2244.
- Doyle, J.T., Patterson, J.L., Warren, J.V., Detweiler, D.K. (1960). Observations on the circulation of domestic cattle. Circ. Res. 8, 4-15.
- 25. Swett WW, M.F., Graves, R.R., Matthews, C.A. (1933). Variations Recorded in the Study of the Conformation and Anatomy of 318 Dairy Cows Having Records of

Production. Mimeo. Pub. BDIM-589. Bureau of Dairy Industry, Division of Dairy Cattle and Cattle Breeding, Feeding, and Management, Washington (DC): United States.

- Lescoat, P., Sauvant, D., Danfaer, A. (1996). Quantitative aspects of blood and amino acid flows in cattle. Reprod. Nutr. Dev. 36, 137-174.
- Hannon, J.P., Bossone, C., Wade, C. (1990). Normal physiological values for conscious pigs used in biomedical research. Lab. Anim. Sci. 40, 293-298.
- Tranquilli, W.J., Parks, C.M., Thurmon, J.C., Benson, G.J., Koritz, G.D., Manohar, M., Theodorakis, M.C. (1982). Organ blood flow and distribution of cardiac output in nonanesthetized swine. Am. J. Vet. Res. 43, 895-897.
- 29. Lundeen, G., Manohar, M., Parks, C. (1983). Systemic distribution of blood flow in swine while awake and during 1.0 and 1.5 MAC isoflurane anesthesia with or without 50% nitrous oxide. Anesth. Analg. 62, 499-512.
- Doornenbal, H., Tong, A.K., Sather, A.P. (1986). Relationships among serum characteristics and performance and carcass traits in growing pigs. J. Anim. Sci. 62, 1675-1681.
- Phuc, B.H.N., Hieu, L.T. (1993). A molasses in diets for growing pigs. Livest. Res. Rural Dev. 5, 11-15.
- 32. Armstrong, R.B., Delp, M.D., Goljan, E.F., Laughlin, M.H. (1987). Distribution of blood flow in muscles of miniature swine during exercise. J. Appl. Physiol. 62, 1285-1298.
- 33. Huang, L., Lin, Z., Zhou, X., Zhu, M., Gehring, R., Riviere, J.E., Yuan, Z. (2015). Estimation of residue depletion of cyadox and its marker residue in edible tissues of pigs using physiologically based pharmacokinetic modelling. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 32, 2002-2017.

- 34. Jaroszewski, .J, Jedziniak, P., Markiewicz, W., Grabowski, T., Chrostowska, M., Szprengier-Juszkiewicz, T. (2008). Pharmacokinetics of flunixin in mature heifers following multiple intravenous administration. Pol. J. Vet. Sci. 11(3): 199-203.
- Kissell, L.W., Brinson, P.D., Gehring, R., Tell, L.A., Wetzlich, S.E., Baynes, R.E., Smith, G.W. (2016). Pharmacokinetics and tissue elimination of flunixin in veal calves. Am. J. Vet. Res. 77(6): 634-640.
- 36. Yu, Z., Jiang, C., Guo, Y., Hu, Y., Chen, D. (2007). Pharmacokinetics of Flunixin Meglumine After Intravenous and Intramuscular Administration in Pigs. Agric. Sci. China 6(11): 1396-1401.
- 37. Buur, J.L., Baynes, R.E., Smith, G.W., Riviere, J.E. (2006). Pharmacokinetics of flunixin meglumine in swine after intravenous dosing. J. Vet. Pharmacol. Ther. 29(5): 437-440.
- 38. EMEA (1999) Committee for veterinary medicinal products flunixin summary reports (1).

- 39. Zeng D, Lin Z, Fang B, Li M, Gehring R, Riviere JE, Zeng Z (2017) Pharmacokinetics of Mequindox and its Marker Residue 1, 4-bisdesoxymequindox in Swine Following Multiple Oral Gavage and Intramuscular Administration: an Experimental Study Coupled with Population Physiologically Based Pharmacokinetic Modeling. J Agric Food Chem, 65(28): 5768-5777.
- 40. Kleinhenz MD, Van Engen NK, Gorden PJ, KuKanich B, Rajewski SM, Walsh P, Coetzee JF (2016) The pharmacokinetics of transdermal flunixin meglumine in Holstein calves. J Vet Pharmacol Ther 39(6): 612-615.