Supporting Information

Assessing global human exposure to T-2 toxin via poultry meat consumption using a lifetime physiologically based pharmacokinetic model

Dongping Zeng^{1,2}, Zhoumeng Lin^{*,2}, Zhenling Zeng¹, Binghu Fang¹, Miao Li², Yi-Hsien Cheng², Yongxue Sun^{*,1}

¹National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China

²Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA

Dongping Zeng: <u>donytsang@scau.edu.cn</u> Zhoumeng Lin: <u>zhoumeng@ksu.edu</u> Zhenling Zeng: <u>zlzeng@scau.edu.cn</u> Binghu Fang: <u>fangbh@scau.edu.cn</u> Miao Li: <u>miaoli@ksu.edu</u> Yi-Hsien Cheng: <u>yhcheng1987@ksu.edu</u> Yongxue Sun: <u>sunyx@scau.edu.cn</u>

* ¹Corresponding author: National Reference Laboratory of Veterinary Drug Residues (SCAU), Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China. E-mail: <u>sunyx@scau.edu.cn</u>; phone: +86-2085284313; fax: +86-2085284313.

* ²Corresponding author: Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, P200 Mosier Hall, Manhattan, KS 66506, USA. E-mail: <u>zhoumeng@ksu.edu</u>; phone: +1-785-532-4087; fax: +1-785-532-4983.

Contents

1. Physiological parameters used in the PBPK model3
2 Chemical-specific parameters used in the PBPK model4
3. Normalized sensitivity coefficients (NSCs) of highly sensitive parameters on selected plasma and tissue dose metrics following multiple oral gavage paradigms
4. Physiological and chemical-specific parameter distributions used in the Monte Carlo analysis
5. Poultry meat consumption factors from OECD in 20177
6. Model calibration of single intravenous injection with plasma data9
7. Model calibration of multiple oral gavage with plasma data10
8. Model calibration of multiple oral gavage with tissues and plasma data for T-2 toxin11
9. Model calibration of multiple oral gavage with tissues data for T-2 triol12
10. Model evaluation of single intravenous injection with plasma data from Osselaere et al. (2013)
11. Model evaluation of single oral gavage with tissues data from Giroir et al. (1991)14
12. Model evaluation of single oral gavage with tissue and plasma data from Chi et al. (1978)
13. Model simulation results of lifetime exposure at EFSA's indicative value for feed (2013/165/EU)
14. PBPK model code for an individual animal (MMD file)17
15. Population PBPK model code
References

1. Physiological parameters used in the PBPK model

Parameter	Symbol	Mean	Source
Body weight (kg)	BW	1.3000	Calculated
Cardiac output (L/h/kg)	QCC	11.000	а
Blood flow rates for T-2 toxin (fraction of cardiac output, un	nitless)		
Kidney	QKC	0.250	b
Liver	QLC	0.350	b
Fat	QFC	0.015	b, c
Muscle	QMC	0.350	а
Rest of body	QRC	0.035	Calculated
Blood flow rates for T-2 triol (fraction of cardiac output, uni	tless)		
Kidney	QKC1	0.250	b
Liver	QLC1	0.350	b
Fat	QFC1	0.015	b, c
Muscle	QMC1	0.350	а
Rest of body	QRC1	0.035	Calculated
Tissue volumes for T-2 toxin (fraction of body weight, unit	ess)		
Blood	VbloodC	0.060	С
Kidney	VKC	0.0064	b
Liver	VLC	0.024	b
Fat	VFC	0.050	b
Muscle	VMC	0.400	b
Rest of body	VRC	0.4596	Calculated
Tissue volumes for T-2 triol (fraction of body weight, unitle	ss)		
Blood	VbloodC1	0.060	С
Kidney	VKC1	0.0064	b
Liver	VLC1	0.024	b
Fat	VFC1	0.050	b
Muscle	VMC1	0.400	b
Rest of body	VRC1	0.4596	Calculated
Growth parameters for lifetime exposure (allometric relationships)			
Body weight at the beginning of the growth curve (kg)	BW_{BEGIN}	0.04	С
Body weight at the end of the growth curve (kg)	BW _{END}	2.04	С
Age at the beginning of the growth curve (days)		1	С
Age at the end of the growth curve (days)	AGE _{END}	35	С
Coefficient of the Gompertz equation for growth (day-1)	Bgomp	0.04455	С
Slope for the regression line of liver on body weight	Slope _{Liver}	0.8683	С
Intercept for the regression line of liver on body weight	Intercept _{Liver}	-3.673	С
Slope for the regression line of fat on body weight	Slope _{Fat}	1.118	С
Intercept for the regression line of fat on body weight	Intercept _{Fat}	-3.928	с
Slope for the regression line of leg muscle on body		1.071	С
weight			
Intercept for the regression line of leg muscle weight on body weight	Intercept _{LegMuscle}	-1.965	С

Notes: a, b, c: the value was adopted from Yang et al. (2015)¹, Cortright et al. (2009)² and Henri et al. (2017)³, respectively.

2 Chemical-specific parameters used in the PBPK model

Table S2. Chemical-specific Parameter in PBPK model.

Parameter	Symbol	Mean	Source
Oral absorption rate constants for T-2 toxin (/h)			
Gastric emptying rate constant	Kst	0.700	Estimated
Intestinal absorption rate constant	Ka	0.800	Estimated
Intestinal transit rate constant	Kint	2.000	Estimated
Bioavailability	Bioavail	0.177	Sun et al., 2015
IV infusion rate constants for T-2 toxin (h)	Timeiv	0.010	Estimated
Parameters of farming conditions for lifetime exposure			
Slope for the regression of feed intake on body weight (no unit)	a_feed	266.2	Henri et al., 2017
Intercept for the regression of feed intake on body weight (no unit)	b_feed	0.0005815	Henri et al., 2017
T-2 toxin concentration in feed (µg/kg of feed)	Feed _{SupplLevel}	250	EFSA, 2014
Time at beginning of the treatment (h)	TreatmentStart	0	Henri et al., 2017
Duration of the lighting period in a day (h)	LightingPeriod	20	Henri et al., 2017
Light is restored every 24 h (h)	PulseInterval	24	Henri et al., 2017
Tissue:plasma partition coefficient for T-2 toxin (unitless)			
Liver	PL	1.200	Calculated
Kidney	PK	1.000	Calculated
Muscle	PM	0.500	Calculated
Fat	PF	0.400	Calculated
Rest of body	PR	0.100	Calculated
Tissue:plasma partition coefficient for T-2 triol (unitless)			
Liver	PL1	0.500	Calculated
Kidney	PK1	1.000	Calculated
Muscle	PM1	0.100	Calculated
Fat	PF1	0.200	Calculated
Rest of body	PR1	0.100	Calculated
Hepatic metabolic rate [/(h*kg)]	KmC	250	Estimated
Fraction of T-2 toxin metabolized to triol (unitless)	Frac	0.900	Estimated
Percentage of plasma protein binding (unitless)			
T-2 toxin	PB	0.250	Estimated
T-2 triol	PB1	0.250	Estimated
Hepatic elimination rate constant (L/h/kg)			
T-2 toxin	KbileC	2.000	Estimated
T-2 triol	Kbile1C	2.000	Estimated
Urine elimination rate constant (L/h/kg)			
T-2 toxin	KurineC	0.050	Estimated
T-2 triol	Kurine1C	0.050	Estimated

Notes: Some parameters were estimated by fitting the PBPK model with the toxincokinetic data. These parameters were marked as "Estimated". The tissue:plasma partition coefficients were calculated experimentally using the area under the concentration-time curve (AUC) method for T-2 toxin and T-2 triol. These parameters were marked as "Calculated". Reference sources: Henri et al. (2017)³; Sun et al. (2015)⁴; EFSA (2014)⁵.

3. Normalized sensitivity coefficients (NSCs) of highly sensitive parameters on selected plasma and tissue dose metrics

following multiple oral gavage paradigms

Table S3. Normalized sensitivity coefficients (NSCs) of highly sensitive parameters on selected plasma and tissue dose
metrics following multiple oral gavage paradigms.

Parameter ^a	Lifetime exposure at 0.25 mg/kg of feed				
	AUCCL1	AUCCK1	AUCCM1	AUCCF1	AUCCV1
QLC	1.55	1.55	1.55	1.55	1.55
QKC	1.10	1.10	1.10	1.10	1.10
QMC	1.55	1.55	1.55	1.55	1.55
Slope _{Liver}	-2.37	-2.37	-2.37	-2.37	-2.37
Intercept _{Liver}	-3.01	-3.01	-3.01	-3.01	-3.01
a_feed	1.00	1.00	1.00	1.00	1.00
b_feed	0.95	0.95	0.95	0.95	0.95
PL	0.83	0.83	0.83	0.83	0.83
PL1	1	-	-	-	-
PK1	-	1	-	-	-
PM1	-	-	1	-	-
PF1	-	-	-	1	-
KmC	0.83	0.83	0.83	0.83	0.83
Frac	1.00	1.00	1.00	1.00	1.00
KbileC	-0.80	-0.80	-0.80	-0.80	-0.80
Kbile1C	-0.96	-0.96	-0.96	-0.96	-0.96

- indicates a |NSC| smaller than 0.5.

^a Only parameters with at least one absolute value of NSC greater than 0.5 are presented. AUCCL1, AUCCK1, AUCCM1, AUCCF1 and AUCCV1 represent 24-h area under T-2 triol concentration curves in the liver, kidney, muscle, fat, and plasma, respectively.

4. Physiological and chemical-specific parameter distributions used in the Monte Carlo analysis

Parameter	Mean	CV	SD	Lower bound	Upper bound	Distribution
QLC	0.35	0.300	0.105	1.442E-01	5.558E-01	Normal
QKC	0.25	0.300	0.075	1.030E-01	3.970E-01	Normal
QMC	0.35	0.300	0.105	1.442E-01	5.558E-01	Normal
Slopeliver	0.8683	0.300	0.260	3.577E-01	1.379E+00	Normal
Interceptliver	-3.673	0.300	-1.102	-1.513E+00	-5.833E+00	Normal
a_feed	266.2	0.100	26.620	2.140E+02	3.184E+02	Normal
b_feed	0.0005815	0.150	0.000	4.105E-04	7.525E-04	Normal
PL	1.2	0.200	0.240	7.982E-01	1.735E+00	Lognormal
PL1	0.5	0.200	0.100	3.326E-01	7.228E-01	Lognormal
PK1	1	0.200	0.200	6.651E-01	1.446E+00	Lognormal
PM1	0.1	0.200	0.020	6.651E-02	1.446E-01	Lognormal
PF1	0.2	0.200	0.040	1.330E-01	2.891E-01	Lognormal
KmC	250	0.200	50.000	1.663E+02	3.614E+02	Lognormal
Frac	0.9	0.200	0.180	5.986E-01	1.301E+00	Lognormal
KbileC	2	0.200	0.400	1.330E+00	2.891E+00	Lognormal
Kbile1C	2	0.200	0.400	1.330E+00	2.891E+00	Lognormal

Table S4. Physiological and chemical-specific parameter distributions used in the Monte Carlo analysis.

Notes: QLC: fraction of cardiac output in liver; QKC: fraction of cardiac output in kidney; QMC: fraction of cardiac output in muscle; Slopeliver: Slope for the regression line of liver on body weight; Interceptliver: Intercept for the regression line of liver on body weight; a_feed: Slope for the regression of feed intake on body weight (no unit); b_feed: Intercept for the regression of feed intake on body weight (no unit); PL: Liver:plasma partition coefficient for T-2 toxin; PL1: Liver:plasma partition coefficient for T-2 triol; PK1: kidney:plasma partition coefficient for T-2 triol; PM1: muscle:plasma partition coefficient for T-2 triol; PF1: fat:plasma partition coefficient for T-2 triol; KmC: Hepatic metabolic rate; Frac: Fraction of T-2 toxin metabolized to triol; KbileC: hepatic elimination rate constant for T-2 toxin; Kbile1C: hepatic elimination rate constant for T-2 triol.

5. Poultry meat consumption factors from OECD in 2017

LOCATION	INDICATOR	SUBJECT	MEASURE	TIME	Value	Value
					kg/capita	g/kg b.w. per day
SDN	MEATCONSUMP	POULTRY	KG_CAP	2017	0.000979	3.83E-05
ETH	MEATCONSUMP	POULTRY	KG_CAP	2017	0.534487	0.020919
NGA	MEATCONSUMP	POULTRY	KG_CAP	2017	0.906039	0.035461
BGD	MEATCONSUMP	POULTRY	KG_CAP	2017	1.23193	0.048216
TZA	MEATCONSUMP	POULTRY	KG_CAP	2017	1.468665	0.057482
MOZ	MEATCONSUMP	POULTRY	KG_CAP	2017	1.784754	0.069853
IND	MEATCONSUMP	POULTRY	KG_CAP	2017	1.957509	0.076615
SSA	MEATCONSUMP	POULTRY	KG_CAP	2017	2.131715	0.083433
ZMB	MEATCONSUMP	POULTRY	KG_CAP	2017	2.613563	0.102292
PAK	MEATCONSUMP	POULTRY	KG_CAP	2017	4.36643	0.170897
PRY	MEATCONSUMP	POULTRY	KG_CAP	2017	6.036024	0.236244
GHA	MEATCONSUMP	POULTRY	KG_CAP	2017	6.124008	0.239687
DZA	MEATCONSUMP	POULTRY	KG_CAP	2017	6.298612	0.246521
IDN	MEATCONSUMP	POULTRY	KG_CAP	2017	6.752108	0.26427
HTI	MEATCONSUMP	POULTRY	KG_CAP	2017	6.976766	0.273063
EGY	MEATCONSUMP	POULTRY	KG_CAP	2017	9.177057	0.35918
THA	MEATCONSUMP	POULTRY	KG_CAP	2017	10.02037	0.392187
BRICS	MEATCONSUMP	POULTRY	KG_CAP	2017	10.83287	0.423987
PHL	MEATCONSUMP	POULTRY	KG_CAP	2017	11.98357	0.469024
CHN	MEATCONSUMP	POULTRY	KG_CAP	2017	12.27283	0.480346
VNM	MEATCONSUMP	POULTRY	KG_CAP	2017	13.69358	0.535952
WLD	MEATCONSUMP	POULTRY	KG_CAP	2017	13.86014	0.542471
KAZ	MEATCONSUMP	POULTRY	KG_CAP	2017	13.98207	0.547243
JPN	MEATCONSUMP	POULTRY	KG_CAP	2017	14.27079	0.558543
URY	MEATCONSUMP	POULTRY	KG_CAP	2017	16.33332	0.639269
KOR	MEATCONSUMP	POULTRY	KG_CAP	2017	16.68396	0.652993
TUR	MEATCONSUMP	POULTRY	KG_CAP	2017	17.86443	0.699195
IRN	MEATCONSUMP	POULTRY	KG_CAP	2017	22.43066	0.877912
UKR	MEATCONSUMP	POULTRY	KG_CAP	2017	23.18318	0.907365
EU28	MEATCONSUMP	POULTRY	KG_CAP	2017	24.23944	0.948706
MEX	MEATCONSUMP	POULTRY	KG_CAP	2017	26.60106	1.041137
COL	MEATCONSUMP	POULTRY	KG_CAP	2017	27.29999	1.068493
RUS	MEATCONSUMP	POULTRY	KG_CAP	2017	28.67472	1.122298
OECD	MEATCONSUMP	POULTRY	KG_CAP	2017	30.19043	1.181622
ZAF	MEATCONSUMP	POULTRY	KG_CAP	2017	32.78601	1.28321
CHL	MEATCONSUMP	POULTRY	KG CAP	2017	34.79571	1.361867
CAN	MEATCONSUMP	POULTRY	KG CAP	2017	34.89126	1.365607
ARG	MEATCONSUMP	POULTRY	KG CAP	2017	37.50803	1.468024
NZL	MEATCONSUMP	POULTRY	KG_CAP	2017	37.86065	1.481826
PER	MEATCONSUMP	POULTRY	KG CAP	2017	38.24378	1.496821
BRA	MEATCONSUMP	POULTRY	KG CAP	2017	39.90459	1.561823
MYS	MEATCONSUMP	POULTRY	KG_CAP	2017	41.69195	1.631779

Table S5. Poultry meat consumption factors from OECD in 2017.

AUS	MEATCONSUMP	POULTRY	KG_CAP	2017	44.46784	1.740424
SAU	MEATCONSUMP	POULTRY	KG_CAP	2017	44.66516	1.748147
USA	MEATCONSUMP	POULTRY	KG_CAP	2017	48.82849	1.911095
ISR	MEATCONSUMP	POULTRY	KG_CAP	2017	56.92912	2.228146

Note: the abbreviations in the column of location represent different countries. The country names refer to the OECD webpage (https://doi.org/10.1787/fa290fd0-en).

Calculation example: The poultry meat consumption value is 48.8 kilograms/capita for USA. The unit should be converted to g/kg b.w. per day. The following formula was used. The body weight for capita is 70kg. One year is equal to 365 days.

$$\frac{\frac{48.8 \times 1000}{70}}{\frac{365}{365}} = 1.911$$

6. Model calibration of single intravenous injection with plasma data

Figure S1. Model calibration of single intravenous injection with plasma data. Comparison of model predictions (solid line) and observed data (squares) for total residues (a), T-2 toxin (b), T-2 triol (c) of chickens exposed to T-2 toxin via single intravenous injection at 0.5 mg/kg. Result of regression analysis between model predictions and observed data is shown in d. The determination coefficient R² value is 0.99. Observed data are from data set 1 listed in Table 1.

7. Model calibration of multiple oral gavage with plasma data

Figure S2. Model calibration of multiple oral gavage with plasma data. Comparison of model predictions (solid line) and observed data (squares) for total residues (a), T-2 toxin (b), and T-2 triol (c) of chickens exposed to T-2 toxin via multiple oral gavage at 2.0 mg/kg twice daily for 2 consecutive days. Result of regression analysis between model predictions and observed data is shown in d. The determination coefficient R² value is 0.98. Observed data are from data set 2 listed in Table 1.

8. Model calibration of multiple oral gavage with tissues and plasma data for T-2 toxin

Figure S3. Model calibration of multiple oral gavage with tissues and plasma data for T-2 toxin. Comparison of model predictions (solid line) and observed data (squares) for T-2 toxin concentrations in liver (a), kidney (b), muscle (c), fat (d) and plasma (e) of chickens exposed to T-2 toxin via multiple oral gavage at 2.0 mg/kg twice daily for 2 consecutive days. Result of regression analysis between model predictions and observed data is shown in f. The determination coefficient R² value is 0.99. Observed data are from data set 3 listed in Table 1 collected as a part of the present study.

9. Model calibration of multiple oral gavage with tissues data for T-2 triol

Figure S4. Model calibration of multiple oral gavage with tissues and plasma data for T-2 triol. Comparison of model predictions (solid line) and observed data (squares) for T-2 triol concentrations in liver (a), kidney (b), muscle (c), fat (d) and plasma (e) of chickens exposed to T-2 toxin via multiple oral gavage at 2.0 mg/kg twice daily for 2 consecutive days. Result of regression analysis between model predictions and observed data is shown in f. The determination coefficient R² value is 0.99. Observed data are from data set 3 listed in Table 1 collected as a part of the present study.

10. Model evaluation of single intravenous injection with plasma data from Osselaere et al. (2013)

Figure S5. Model evaluation of single intravenous injection with plasma data from **Osselaere et al. (2013)**⁶. Comparison of model predictions (solid line) and observed data (squares) for T-2 toxin concentrations in plasma (a) of chickens exposed to T-2 toxin via single intravenous injection at 0.02 mg/kg. Result of regression analysis between model predictions and observed data is shown in b. The determination coefficient R² value is 0.88.

11. Model evaluation of single oral gavage with tissues data from Giroir et al. (1991)

Figure S6. Model evaluation of single oral gavage with tissues data from Giroir et al. (1991)⁷. Comparison of model predictions (solid line) and observed data (squares) for total residue concentrations in liver (a), kidney (b) and muscle (c) of chickens exposed to T-2 toxin via single oral gavage at 0.5 mg/kg. Result of regression analysis between model predictions and observed data is shown in d. The determination coefficient R² value is 0.71.

12. Model evaluation of single oral gavage with tissue and plasma data from Chi et al.

Figure S7. Model evaluation of single oral gavage with tissue and plasma data from Chi et al. (1978)⁸. Comparison of model predictions (solid line) and observed data (squares) for total residue concentrations in liver (a), kidney (b), muscle (c), fat (d) and plasma (e) of chickens exposed to T-2 toxin via single oral gavage at 0.5 mg/kg. Result of regression analysis between model predictions and observed data is shown in f. The determination coefficient R² value is 0.85.

13. Model simulation results of lifetime exposure at EFSA's indicative value for feed

(2013/165/EU)

Figure S8. Model simulation results of lifetime exposure at EFSA's indicative value for feed (2013/165/EU). Model predictions (blue line, 99th percentile; black line, Mean) for T-2 triol concentrations in liver (a), kidney (b), muscle (c), fat (d) and plasma (e) of chickens exposed to T-2 toxin at guidance value of 0.25 mg/kg in feed for 33.25 consecutive days. LOD, limit of detection.

14. PBPK model code for an individual animal (MMD file)

METHOD RK4

STARTTIME = 0 STOPTIME = 50 DT = 0.0025 DTOUT = 0.001

; Physiological parameters ; Blood flow rates QCC = 11.0 ; Cardiac output (L/h/kg) (Yang et al., 2015)

: Blood flow rates for T-2 toxin QLC = 0.350; Fraction of blood flow to the liver (Cortright et al., 2009) QKC = 0.250; Fraction of blood flow to the kidney (Cortright et al., 2009) QFC = 0.015 ; Fraction of blood flow to the fat (Cortright et al., 2009; Henri et al., 2016) QMC = 0.350 ; Fraction of blood flow to the muscle (Yang et al., 2015) QRC = 0.035; Fraction of blood flow to the rest of body (QRC = 1-QLC-QKC-QFC-QMC) ; Blood flow rates for T-2 triol QLC1 = 0.350; Fraction of blood flow to the liver (Cortright et al., 2009) QKC1 = 0.250 ; Fraction of blood flow to the kidney (Cortright et al., 2009) QFC1 = 0.015; Fraction of blood flow to the fat (Cortright et al., 2009; Henri et al., 2016) QMC1 = 0.350; Fraction of blood flow to the muscle (Yang et al., 2015) QRC1 = 0.035 ; Fraction of blood flow to the rest of body (QRC1 = 1-QLC1-QKC1-QFC1-QMC1) ; Tissue volumes BW = 1.3; Body weight (kg) : Tissue volumes for T-2 toxin VLC = 0.024 ; Fractional liver tissue (Cortright et al., 2009)

VKC = 0.0064 ; Fractional kidney tissue (Cortright et al., 2009)

VFC = 0.050 ; Fractional fat tissue (Cortright et al., 2009)

VMC = 0.400 ; Fractional muscle tissue (Cortright et al., 2009)

VRC = 0.4596 ; Fractional rest of body, VRC = 1-VLC-VKC-VFC-VMC-VbloodC

VbloodC = 0.060 ; Blood volume, fraction of BW (Henri et al., 2016)

; Tissue volumes for T-2 triol VLC1 = 0.024 ; Fractional liver tissue (Cortright et al., 2009) VKC1 = 0.0064 ; Fractional kidney tissue (Cortright et al., 2009) VFC1 = 0.050 ; Fractional fat tissue (Cortright et al., 2009) VMC1 = 0.400 ; Fractional muscle tissue (Cortright et al., 2009) VRC1 = 0.4596 ; Fractional rest of body, VRC1 = 1-VLC1-VKC1-VFC1-VMC1-VbloodC1 VbloodC1 = 0.060 ; Blood volume, fraction of BW (Henri et al., 2016)

; Mass Transfer Parameters (Chemical-specific parameters) ; Chemical molecular weights and unit conversion factors

MW = 466.53 ; g/mol, T-2 toxin

MW1 = 382.45 ; g/mol, T-2 triol

MWmol = 2.13 ; umol/mg, T-2 toxin, from mg to umol MWmg = 0.47 ; mg/umol, T-2 toxin, from umol to mg MW1mol = 2.63 ; umol/mg, T-2 triol, from mg to umol MW1mg = 0.38 ; mg/umol, T-2 triol, from umol to mg

; Partition coefficients for T-2 toxin, PC, unitless PL = 1.2 ; Liver:plasma PC, estimated in the present study PK = 1 ; Kidney:plasma PC, estimated in the present study PF = 0.4 ; Fat:plasma PC, estimated in the present study PM = 0.5 ; Muscle:plasma PC, estimated in the present study PR = 0.1 ; Rest-of-body:plasma PC, estimated in the present study

; Partition coefficients for T-2 triol, PC, unitless PL1 = 0.5 ; Liver:plasma PC, estimated in the present study PK1 = 1 ; Kidney:plasma PC, estimated in the present study PF1 = 0.2 ; Fat:plasma PC, estimated in the present study PM1 = 0.1 ; Muscle:plasma PC, estimated in the present study PR1 = 0.1 ; Rest-of-body:plasma PC, estimated in the present study

; Kinetic constants ; IV infusion rate constants for T-2 toxin Timeiv = 0.01; IV injection/infusion time (h)

; Oral absorption and fecal elimination rate constants for T-2 toxin Kst = 0.7; /h, gastric emptying rate constant, estimated in the present study Ka = 0.8 /h, intestinal absorption rate constant, estimated in the present study Kint = 2; /h, intestinal transit rate constant, estimated in the present study Bioavail = 0.177; /%, Bioavailability of T-2 toxin, estimated in the present study

; Percentage of plasma protein binding (unitless), measured in the present study PB = 0.25 ; Percentage of T-2 toxin bound to plasma proteins PB1 = 0.25 ; Percentage of T-2 triol bound to plasma proteins Free = 1-PB Free1 = 1-PB1

; Metabolic rate constants

KmC = 250; /(h*kg), liver metabolic rate constant of T-2 toxin, estimated in the present study Frac = 0.9; Unitless, fraction of T-2 toxin metabolized to T-2 triol, estimated in the present study

; Bile elimination rate constant KbileC = 2 ; L/h/kg, for T-2 toxin, estimated in the present study Kbile1C = 2 ; L/h/kg, for T-2 triol, measured in the present study

; Urine elimination rate constant KurineC = 0.05 ; L/h/kg, for T-2 toxin, estimated in the present study Kurine1C = 0.05 ; L/h/kg, for T-2 triol, measured in the present study

; Parameters for various exposure scenarios PDOSEiv = 0.5 ; mg/kg PDOSEoral = 0 ; mg/kg

; Cardiac output and blood flows to tissues (L/h) QC = QCC*BW ; Cardiac output ; Cardiac output and blood flows to tissues for T-2 toxin (L/h) $QL = QLC^*QC$; Liver $QK = QKC^{*}QC$; Kidney $QF = QFC^*QC$; Fat $QM = QMC^*QC$; Muscle QR = QRC*QC ; Rest of body ; Cardiac output and blood flows to tissues for T-2 triol (L/h) QL1 = QLC1*QC ; Liver QK1 = QKC1*QC ; Kidney QF1 = QFC1*QC; Fat QM1 = QMC1*QC ; Muscle QR1 = QRC1*QC ; Rest of body ; Tissue volumes (L) ; Tissue volumes for T-2 toxin (L) VL = VLC*BW ; Liver VK = VKC*BW ; Kidney VF = VFC*BW ; Fat VM = VMC*BW ; Muscle VR = VRC*BW ; Rest of body Vblood = VbloodC*BW ; Blood ; Tissue volumes for T-2 triol (L) VL1 = VLC1*BW ; Liver VK1 = VKC1*BW ; Kidney VF1 = VFC1*BW ; Fat VM1 = VMC1*BW ; Muscle VR1 = VRC1*BW ; Rest of body Vblood1 = VbloodC1*BW ; Blood ; Dosing amounts (mg converted to umol) DOSEiv = PDOSEiv*BW*MWmol; (umol) DOSEoral = PDOSEoral*BW*MWmol ; (umol) ; Multiple dosing using the REPEAT/EXPOSURE function tlen = 0.01; Length of oral gavage exposure (h/day) tinterval = 12; Varied dependent on the exposure paradigm (h) Tdoses = 4 ; times for multiple oral gavage REPEAT[1..Tdoses] = SQUAREPULSE(0+(i-1)*tinterval, tlen) Exposure = ARRAYSUM(REPEAT[*]) ; Dosing, multiple oral gavage RDOSEoral = (DOSEoral/tlen)*Exposure RAST = RDOSEoral-Kst*AST

d/dt(AST) = RAST

init AST = 0

19

RAI = Kst*AST-Ka*AI-Kint*AI Rcolon=Kint*Al d/dt(Acolon) = Rcolon init Acolon = 0d/dt(AI) = RAIinit AI = 0RAO=Ka*AI d/dt(AAO) = RAOinit AAO = 0; T-2 toxin iv injection to the venous IVR = DOSEiv/Timeiv $RIV = IVR^{*}(1.-step(1, Timeiv))$ d/dt(Aiv) = Rivinit Aiv = 0; Metabolic rate Km = KmC*BW; h-1 ; Hepatic elimination rates Kbile = KbileC*BW ; L/h, for T-2 toxin Kbile1 = Kbile1C*BW ; L/h, for T-2 triol : Urine elimination rates Kurine = KurineC*BW ; L/h, for T-2 toxin Kurine1 = Kurine1C*BW ; L/h, for T-2 triol : Sub-model for T-2 toxin ; Blood compartment CV = (QL*CVL+QK*CVK+QF*CVF+QM*CVM+QR*CVR+Riv)/QC $RA = QC^{*}(CV-CAfree)$ d/dt(AA) = RAinit AA = 0CA = AA/Vblood $CAfree = CA^{*}(1-PB)$ CVmg = CV*MWmg d/dt(AUCCV) = CVinit AUCCV = 0; Liver compartment RL = QL*(CAfree-CVL)+RAO-Rmet-Rbile d/dt(AL) = RLinit AL = 0CL = AL/VLCVL = AL/(VL*PL)CLmg=CL*MWmg d/dt(AUCCL) = CLinit AUCCL = 0; Metabolism of T-2 toxin in the liver compartment

Rmet=Km*CL*VL ; Total hepatic metabolic rate, umol/h

Rmet1=Rmet*Frac; Hepatic metabolic rate to T-triol, umol/h d/dt(Amet) = Rmet ; Amount of T-2 toxin that is metabolized in the liver, umol init Amet = 0d/dt(Amet1) = Rmet1; Amount of T-2 triol that is produced in the liver, umol init Amet1 = 0; Hepatic excretion of T-2 toxin Rbile = Kbile*CVL d/dt(Abile) = Rbileinit Abile = 0; Kidney compartment RK = QK*(CAfree-CVK)-Rurine d/dt(AK) = RKinit AK = 0CK = AK/VKCVK = AK/(VK*PK)CKmg=CK*MWmg ; Urinary excretion of OTC Rurine = Kurine*CVK d/dt(Aurine) = Rurine init Aurine = 0: Fat compartment $RF = QF^{*}(CAfree-CVF)$ d/dt(AF) = RFinit AF = 0CF = AF/VFCVF = AF/(VF*PF)CFmg = CF*MWmg d/dt(AUCCF) = CFinit AUCCF = 0 ; Muscle compartment $RM = QM^{*}(CAfree-CVM)$ d/dt(AM) = RMinit AM = 0CM = AM/VMCVM = AM/(VM*PM)CMmg=CM*MWmg d/dt(AUCCM) = CMinit AUCCM = 0; Rest-of-body compartment $RR = QR^{*}(CAfree-CVR)$ d/dt(AR) = RRinit AR = 0CR = AR/VRCVR = AR/(VR*PR)CRmg=CR*MWmg

d/dt(AUCCR) = CRinit AUCCR = 0; Mass balance for T-2 toxin Qbal = QC-QL-QK-QF-QM-QRTmass = AA+AL+AK+AF+AM+AR+Abile+Amet+Aurine Bal = AAO+Aiv-Tmass ; Mass balance ; Sub-model for T-2 triol ; Blood compartment CV1 = (QL1*CVL1+QK1*CVK1+QF1*CVF1+QM1*CVM1+QR1*CVR1)/QC $RA1 = QC^{*}(CV1-CA1free)$ d/dt(AA1) = RA1init AA1 = 0CA1 = AA1/Vblood1CV1mg=CV1*MW1mg $CA1 free = CA1^{(1-PB1)}$ d/dt(AUCCV1) = CV1init AUCCV1 = 0; Liver compartment RL1 = QL1*(CA1free-CVL1)+Rmet1-Rbile1 d/dt(AL1) = RL1init AL1 = 0CL1 = AL1/VL1CVL1 = AL1/(VL*PL1)CL1mg=CL1*MW1mg d/dt(AUCCL1) = CL1init AUCCL1 = 0: Hepatic excretion of T-2 triol Rbile1 = Kbile1*CVL1 d/dt(Abile1) = Rbile1 init Abile1 = 0; Kidney compartment RK1 = QK1*(CA1free-CVK1)-Rurine1 d/dt(AK1) = RK1init AK1 = 0CK1 = AK1/VK1CVK1 = AK1/(VK1*PK1)CK1mg=CK1*MWmg : Urinary excretion of T-2 toxin Rurine1 = Kurine1*CVK1 d/dt(Aurine1) = Rurine1 init Aurine 1 = 0; Fat compartment RF1 = QF1*(CA1free-CVF1) d/dt(AF1) = RF1

init AF1 = 0CF1 = AF1/VF1CVF1 = AF1/(VF1*PF1)CF1mg = CF1*MW1mgd/dt(AUCCF1) = CF1init AUCCF1 = 0; Muscle compartment RM1 = QM1*(CA1free-CVM1) d/dt(AM1) = RM1init AM1 = 0CM1 = AM1/VM1CVM1 = AM1/(VM1*PM1)CM1mg=CM1*MW1mg d/dt(AUCCM1) = CM1init AUCCM1 = 0; Rest-of-body compartment RR1 = QR1*(CA1free-CVR1) d/dt(AR1) = RR1init AR1 = 0CR1 = AR1/VR1CVR1 = AR1/(VR1*PR1)CR1mg = CR1*MW1mgd/dt(AUCCR1) = CR1init AUCCR1 = 0: Mass balance for T-2 triol Qbal1 = QC-QL1-QK1-QF1-QM1-QR1 Tmass1 = AA1+AL1+AK1+AF1+AM1+AR1+Abile1+Aurine1 Bal1 = Amet1-Tmass1 ; Mass balance CVtotal = CVmg+CV1mg CLtotal = CLmq+CL1mq

CKtotal = CKmg+CK1mg CMtotal = CMmg+CM1mg CFtotal = CFmg+CF1mg

15. Population PBPK model code

METHOD RK4

STARTTIME = 0STOPTIME = 50DT = 0.0025 DTOUT = 0.001 ; Physiological parameters : Blood flow rates QCC = 11.0 ; Cardiac output (L/h/kg) (Yang et al., 2015) ; Blood flow rates for T-2 toxin QLC = 0.350; Fraction of blood flow to the liver (Cortright et al., 2009) QKC = 0.250 ; Fraction of blood flow to the kidney (Cortright et al., 2009) QMC = 0.350; Fraction of blood flow to the muscle (Yang et al., 2015) QFC = 0.015 ; Fraction of blood flow to the fat (Cortright et al., 2009; Henri et al., 2016) QRC = 0.035 ; Fraction of blood flow to the rest of body (QRC = 1-QLC-QKC-QFC-QMC)QLC sd = 0.105 : Standard deviation of QLC QKC sd = 0.075 : Standard deviation of QKC QMC sd = 0.105 : Standard deviation of QMC init QLCm = Normal(QLC, QLC sd) : Generation of the QLCm based on normal distribution init QKCm = Normal(QKC, QKC_sd) ; Generation of the QKCm based on normal distribution init QMCm = Normal(QMC, QMC sd) : Generation of the QMCm based on normal distribution init QFCm = QFC init QRCm = QRC AdjustF1 = QLCm+QKCm+QMCm+QFC+QRC; Adjust factor for T-2 toxin to keep the sum of blood flow fractions to 1 next QLCm = QLCm/AdjustF1 ; Adjustment of QLCm based on the adjust factor next QKCm = QKCm/AdjustF1 ; Adjustment of QKCm based on the adjust factor next QMCm = QMCm/AdjustF1 ; Adjustment of QMCm based on the adjust factor next QFCm = QFCm/AdjustF1 ; Adjustment of QFCm based on the adjust factor ; Adjustment of QRCm based on the adjust next QRCm = QRCm/AdjustF1 factor limit QLCm >= 1.442E-01 ; limit the parameter values within the lower and upper bounds limit QLCm <= 5.558E-01 ; limit the parameter values within the lower and upper bounds limit QKCm >= 1.030E-01 ; limit the parameter values within the lower and upper bounds limit QKCm <= 3.970E-01; limit the parameter values within the lower and upper bounds

limit QMCm \geq 1.442E-01 ; limit the parameter values within the lower and upper bounds limit QMCm \leq 5.558E-01 ; limit the parameter values within the lower and upper bounds

```
: Blood flow rates for T-2 triol
QLC1 = 0.350
                             ; Fraction of blood flow to the liver (Cortright et al., 2009)
QKC1 = 0.250
                             ; Fraction of blood flow to the kidney (Cortright et al., 2009)
QFC1 = 0.015
                             ; Fraction of blood flow to the fat (Cortright et al., 2009; Henri et
al., 2016)
QMC1 = 0.350
                             ; Fraction of blood flow to the muscle (Yang et al., 2015)
                            ; Fraction of blood flow to the rest of body (QRC1 = 1-QLC1-
QRC1 = 0.035
QKC1-QFC1-QMC1)
QLC1m = QLCm
QKC1m = QKCm
QMC1m = QMCm
QFC1m = QFCm
QRC1m = QRCm
: Tissue volumes
; Body weight growth during lifespan
AaeBeain = 1
                            ; days, age at the beginning of the growth curve
AgeEnd = 35
                           ; days, age at the end of the growth curve
BWBegin = 0.04
                           ; kg, BW at the beginning of the growth curve
                            ; kg, BW at he end of the growth curve
Bgompertz = 0.0445516
BWEnd = 2.04
                            ; growth rate of the gompertz function
                            ; conversion from a day to hours
hoursinaday = 24
BW=BWEnd*(BWEnd/BWBegin)**(-(EXP(-Bgompertz*(AgeEnd-AgeBegin))-EXP(-
Bgompertz*( (Time/hoursinaday) -AgeBegin)))/( -1+EXP(-Bgompertz*( AgeEnd-AgeBegin))))
                           ; Gompertz function, BW growth in function of time
; Tissue volumes for T-2 toxin
VKC = 0.0064
                           ; Fractional kidney tissue (Cortright et al., 2009)
VbloodC = 0.060
                           ; Blood volume, fraction of BW (Henri et al., 2016)
: Tissue volumes for T-2 triol
VKC1 = 0.0064
                          ; Fractional kidney tissue (Cortright et al., 2009)
VbloodC1 = 0.060
                          ; Blood volume, fraction of BW (Henri et al., 2016)
: Mass Transfer Parameters (Chemical-specific parameters)
; Chemical molecular weights and unit conversion factors
MW = 466.53
                         ; g/mol, T-2 toxin
MW1 = 382.45
                          ; g/mol, T-2 triol
MWmol = 2.13
                         ; umol/mg, T-2 toxin, from mg to umol
MWmg = 0.47
                         ; mg/umol, T-2 toxin, from umol to mg
MW1mol = 2.63
                          ; umol/mg, T-2 triol, from mg to umol
                          ; mg/umol, T-2 triol, from umol to mg
MW1mg = 0.38
; Partition coefficients for T-2 toxin, PC, unitless
PL = 1.2
                                                     ; Liver:plasma PC, estimated in the
present study
```

PK = 1 ; Kidney:plasma PC, estimated in the present study PF = 0.4; Fat:plasma PC, estimated in the present study PM = 0.5; Muscle:plasma PC, estimated in the present study PR = 0.1 ; Rest-of-body:plasma PC, estimated in the present study PL sd = 0.240: Standard deviation of PL PL In = $\log (PL^{2}/(PL sd^{2}+PL^{2})^{0.5})$; Lognormal transformation of PL values PL lnsd = $(logn(1+PL sd^{2}/PL^{2}))^{0.5}$ init PLm = exp(Normal(PL_In, PL_Insd)) next PLm = PLm ; Generation of PLm based on lognormal distribution limit PLm \geq 7.982E-01 : limit the parameter values within the lower and upper bounds limit PLm <= 1.735E+00 ; limit the parameter values within the lower and upper bounds ; Partition coefficients for T-2 triol, PC, unitless PL1 = 0.5 ; Liver:plasma PC, estimated in the present study PK1 = 1; Kidney:plasma PC, estimated in the present study ; Fat:plasma PC, estimated in the PF1 = 0.2present study PM1 = 0.1; Muscle:plasma PC, estimated in the present study PR1 = 0.1; Rest-of-body:plasma PC, estimated in the present study PL1 sd = 0.1; Standard deviation of PL1 PK1 sd = 0.2: Standard deviation of PK1 PM1 sd = 0.02: Standard deviation of PM1 PF1 sd = 0.04: Standard deviation of PF1 PL1 In = $logn(PL1^2/(PL1_sd^2+PL1^2)^{0.5})$: Lognormal transformation of PL1 values PL1 Insd = $(logn(1+PL1 sd^2/PL1^2))^{0.5}$ PK1 In = $\log n(PK1^2/(PK1 sd^2+PK1^2)^{0.5})$; Lognormal transformation of PK1 values PK1 lnsd = $(logn(1+PK1 sd^2/PK1^2))^{0.5}$ PM1 In = $\log n(PM1^2/(PM1 sd^2+PM1^2)^{0.5})$; Lognormal transformation of PM1 values PM1 Insd = $(logn(1+PM1 sd^2/PM1^2))^{0.5}$ PF1 In = $\log n(PF1^2/(PF1 sd^2+PF1^2)^{0.5})$; Lognormal transformation of PF1 values PF1 Insd = $(logn(1+PF1 sd^{2}/PF1^{2}))^{0.5}$ init PL1m = exp(Normal(PL1 In, PL1 Insd)) next PL1m = PL1m ; Generation of PL1m based on lognormal distribution init PK1m = exp(Normal(PK1 In, PK1 Insd)) next PK1m = PK1m : Generation of PK1m based on lognormal distribution init PM1m = exp(Normal(PM1_In, PM1_Insd)) next PM1m = PM1m ; Generation of PM1m based on lognormal distribution

init PF1m = exp(Normal(PF1 In, PF1 Insd)) next PF1m = PF1m : Generation of PF1m based on lognormal distribution limit PL1m >= 3.326E-01; limit the parameter values within the lower and upper bounds limit PL1m <= 7.228E-01 ; limit the parameter values within the lower and upper bounds limit PK1m >= 6.651E-01; limit the parameter values within the lower and upper bounds limit PK1m <= 1.446E+00; limit the parameter values within the lower and upper bounds limit PM1m >= 6.651E-02; limit the parameter values within the lower and upper bounds limit PM1m <= 1.446E-01 ; limit the parameter values within the lower and upper bounds limit PF1m >= 1.330E-01 ; limit the parameter values within the lower and upper bounds limit PF1m <= 2.891E-01 ; limit the parameter values within the lower and upper bounds : Kinetic constants ; Oral absorption rate constants for T-2 toxin : %. Bioavailability of T-2 toxin, estimated in the present study Bioavail = 0.25 K_abs = 3.85 ; 1/h, constant of absorption (Henri et al., 2009) K crop = 0.5 ; 1/h, constant of transit from crop to gut (Henri et al., 2016) Tlag = 0.25 ; h, delay time between input and output (Henri et al., 2016) ; Feed intake from breeders data a feed = 266.2; a feed and b feed were extracted from field data (http://en.aviagen.com/ross-pm3/) b feed = 0.0005815; a_feed and b_feed were extracted from field data (http://en.aviagen.com/ross-pm3/) a feed sd = 26.62: Standard deviation of a feed b feed sd = 8.723E-05 ; Standard deviation of b feed init a feedm = Normal(a feed, a feed sd) next a feedm = a feedm ; Generation of the a feedm based on normal distribution init b feedm = Normal(b_feed, b_feed_sd) next b_feedm = b_feedm ; Generation of the b feedm based on normal distribution feed intake=(a feedm*(1-exp(-b feedm*BW))) limit a feedm >= 2.140E+02; limit the parameter values within the lower and upper bounds limit a feedm <= 3.184E+02; limit the parameter values within the lower and upper bounds limit b feedm >= 4.105E-04; limit the parameter values within the lower and upper bounds limit b feedm <= 7.525E-04; limit the parameter values within the lower and upper bounds ; T-2 toxin ingestion rate depending on feed intake, feed supplementation level ; the daily dose is distributed over the lighting period (it is assumed that chickens only eat when light is switched on) LightingPeriod=20 ; h lighting period in a day (Henri, 2009) feed suppl level=0.25*MWmol ; umol of T-2 toxin per kg of feed, T-2 toxin supplementation level(2013/165/EU) ingestion rate=(feed intake*feed suppl level)/LightingPeriod ; umol of T-2 toxin per hour : Events and Periods PulseInterval=24.0 ; h, Interval between two pulses of ingestion

TreatmentPeriod=6+33*hoursinaday ; 33 days of exposure plus 6 hours the day after TreatmentStart = 0.0 ; h, beginning of the treatment (start time of the first pulse) SimulationPeriod=34*hoursinaday ; h, lifespan ; Percentage of plasma protein binding (unitless), measured in the present study PB = 0.25; Percentage of T-2 toxin bound to plasma proteins PB1 = 0.25 ; Percentage of T-2 triol bound to plasma proteins Free = 1-PB : Percentage of T-2 toxin unbound to plasma proteins Free1 = 1-PB1 ; Percentage of T-2 triol unbound to plasma proteins ; Metabolic rate constants KmC = 250; $/(h^*kg)$, liver metabolic rate constant of T-2 toxin, estimated in the present study Frac = 0.9; Unitless, fraction of T-2 toxin metabolized to T-2 triol, estimated in the present study ; Standard deviation of KmC KmC sd = 50Frac sd = 0.18 ; Standard deviation of Frac KmC In = $\log (KmC^2/(KmC sd^2+KmC^2)^{0.5})$; Lognormal transformation of KmC KmC lnsd = $(logn(1+KmC sd^2/KmC^2))^{0.5}$ Frac In = $\log n(Frac^2/(Frac sd^2+Frac^2)^{0.5})$; Lognormal transformation of Frac Frac Insd = (logn(1+Frac sd^2/Frac^2))^0.5 init KmCm = exp(Normal(KmC In, KmC Insd)) next KmCm = KmCm ; Generation of KmCm based on lognormal distribution init Fracm = exp(Normal(Frac In, Frac Insd)) next Fracm = Fracm : Generation of Fracm based on lognormal distribution limit KmCm \geq 1.663E+02 : limit the parameter values within the lower and upper bounds limit KmCm <= 3.614E+02; limit the parameter values within the lower and upper bounds limit Fracm >= 5.986E-01; limit the parameter values within the lower and upper bounds limit Fracm <= 1.301E+00; limit the parameter values within the lower and upper bounds ; Bile elimination rate constant KbileC = 2 ; L/h/kg, for T-2 toxin, estimated in the present study Kolle IC = 2; L/h/kg, for T-2 triol, measureKbileC_sd = 0.4; Standard deviation of KbileCKbile1C_sd = 0.4; Standard deviation of Kbile1C ; L/h/kg, for T-2 triol, measured in the present study ; Standard deviation of Kbile1C KbileC In = logn(KbileC^2/(KbileC sd^2+KbileC^2)^0.5) ; Lognormal transformation of KbileC KbileC Insd = (logn(1+KbileC sd^2/KbileC^2))^0.5 Kbile1C In = logn(Kbile1C^2/(Kbile1C sd^2+Kbile1C^2)^0.5) ; Lognormal transformation of Kbile1C Kbile1C Insd = (logn(1+Kbile1C sd^2/Kbile1C^2))^0.5 init KbileCm = exp(Normal(KbileC In, KbileC Insd)) next KbileCm = KbileCm ; Generation of KbileCm based on lognormal distribution

init Kbile1Cm = exp(Normal(Kbile1C In, Kbile1C Insd)) next Kbile1Cm = Kbile1Cm ; Generation of Kbile1Cm based on lognormal distribution limit KbileCm >= 1.330E+00; limit the parameter values within the lower and upper bounds limit KbileCm <= 2.891E+00; limit the parameter values within the lower and upper bounds limit Kbile1Cm >= 1.330E+00 ; limit the parameter values within the lower and upper bounds limit Kbile1Cm <= 2.891E+00; limit the parameter values within the lower and upper bounds : Urine elimination rate constant KurineC = 0.05 ; L/h/kg, for T-2 toxin, estimated in the present study Kurine1C = 0.05; L/h/kg, for T-2 triol, measured in the present study ; Cardiac output and blood flows to tissues (L/h) $QC = QCC^*BW$: Cardiac output ; Cardiac output and blood flows to tissues for T-2 toxin (L/h) $OI = OI Cm^*OC$ ·Livor

	, LIVCI
QK = QKCm*QC	; Kidney
QM = QMCm*QC	; Muscle
QF = QFCm*QC	; Fat
QR = QRCm*QC	; Rest of body

; Cardiac output and blood flows to tissues for T-2 triol (L/h)

QL1 = QLC1m*QC	; Liver
QK1 = QKC1m*QC	; Kidney
QM1 = QMC1m*QC	; Muscle
QF1 = QFC1m*QC	; Fat
QR1 = QRC1m*QC	; Rest of body

; Tissue volumes for T-2 toxin (L) : Liver growth slope liver=0.8683 ; slope of the growth curve intercept liver=-3.673 ; intercept of the growth curve slope liver sd = 0.26; Standard deviation of slope liver intercept_liver_sd = -1.102 ; Standard deviation of intercept liver init slope liverm = Normal(slope liver, slope liver sd) next slope liverm = ; Generation of the slope liverm based on normal distribution slope liverm init intercept_liverm = Normal(intercept_liver, intercept_liver_sd) next intercept_liverm = intercept_liverm ; Generation of the intercept_liverm based on normal distribution VL=exp(slope liverm*LOGN(BW)+intercept liverm) ; Liver growth in function of BW limit slope liverm >= 3.577E-01; limit the parameter values within the lower and upper bounds limit slope liverm <= 1.379E+00; limit the parameter values within the lower and upper bounds limit intercept liverm $\geq -1.513E+00$; limit the parameter values within the lower and upper bounds limit intercept_liverm <= -5.833E+00 ; limit the parameter values within the lower and upper

bounds

; Fat growth slope fat=1.188 ; slope of the growth curve intercept fat=-3.9275 ; intercept of the growth curve VF=exp(slope fat*LOGN(BW)+intercept fat) ; Fat growth in function of BW ; Leg muscle growth slope LegMuscle=1.071 ; slope of the growth curve intercept LegMuscle=-1.965174944 ; intercept of the growth curve VM=exp(slope legmuscle*LOGN(BW)+intercept legmuscle) ; Leg muscle growth in function of BW VK = VKC*BW ; Kidney Vblood = VbloodC*BW : Blood VR = BW-(VL+VF+VM+VK+Vblood); Rest of body ; Tissue volumes for T-2 triol (L) VL1 = VL; Liver VK1 = VK; Kidney VF1 = VF; Fat VM1 = VM: Muscle Vblood1 = Vblood ; Blood VR1 = VR; Rest of body ; Feed intake, lifespan exposure oral_ending = IF time > TreatmentPeriod Then 0 Else 1 oral starting = IF time-TreatmentStart>=0 Then 1 Else 0 multiple oral = IF MOD((time-TreatmentStart),PulseInterval)<=LightingPeriod Then 1 Else 0 R CROP = ingestion rate*multiple oral*oral starting*oral ending-K crop*A CROP; rate of change of amount in crop d/dt(A CROP) = R CROP init A CROP = 0 d/dt(A GUT) = R GUTinit A GUT = 0R_GUT = delay(K_crop*A_CROP,Tlag)-(K_abs*A_GUT) RAO = K abs*A GUT d/dt(AAO) = RAOinit AAO = 0: Metabolic rate Km = KmCm*BW ; h-1 : Hepatic elimination rates Kbile = KbileCm*BW ; L/h, for T-2 toxin Kbile1 = Kbile1Cm*BW ; L/h, for T-2 triol

: Urine elimination rates ; L/h, for T-2 toxin Kurine = KurineC*BW Kurine1 = Kurine1C*BW ; L/h, for T-2 triol ; Sub-model for T-2 toxin ; Blood compartment CV = (QL*CVL+QK*CVK+QF*CVF+QM*CVM+QR*CVR)/QC $RA = QC^{*}(CV-CAfree)$ d/dt(AA) = RAinit AA = 0CA = AA/Vblood $CAfree = CA^{*}(1-PB)$ CVmg = CV*MWmg d/dt(AUCCV) = CVinit AUCCV = 0 ; Liver compartment RL = QL*(CAfree-CVL)+RAO-Rmet-Rbile d/dt(AL) = RLinit AL = 0CL = AL/VLCVL = AL/(VL*PLm)CLmg=CL*MWmg d/dt(AUCCL) = CLinit AUCCL = 0; Metabolism of T-2 toxin in the liver compartment Rmet=Km*CL*VL ; Total hepatic metabolic rate, umol/h ; Hepatic metabolic rate to T-triol, umol/h Rmet1=Rmet*Frac d/dt(Amet) = Rmet ; Amount of T-2 toxin that is metabolized in the liver, umol init Amet = 0d/dt(Amet1) = Rmet1 ; Amount of T-2 triol that is produced in the liver, umol init Amet1 = 0; Hepatic excretion of T-2 toxin Rbile = Kbile*CVL d/dt(Abile) = Rbile init Abile = 0; Kidney compartment RK = QK*(CAfree-CVK)-Rurine d/dt(AK) = RKinit AK = 0CK = AK/VKCVK = AK/(VK*PK)CKmg=CK*MWmg ; Urinary excretion of OTC

d/dt(Aurine) = Rurine init Aurine = 0; Fat compartment $RF = QF^{*}(CAfree-CVF)$ d/dt(AF) = RFinit AF = 0CF = AF/VFCVF = AF/(VF*PF)CFmq = CF*MWmqd/dt(AUCCF) = CFinit AUCCF = 0: Muscle compartment $RM = QM^{*}(CAfree-CVM)$ d/dt(AM) = RMinit AM = 0CM = AM/VMCVM = AM/(VM*PM)CMmg=CM*MWmg d/dt(AUCCM) = CMinit AUCCM = 0: Rest-of-body compartment $RR = QR^{*}(CAfree-CVR)$ d/dt(AR) = RRinit AR = 0CR = AR/VRCVR = AR/(VR*PR)CRmg=CR*MWmg d/dt(AUCCR) = CRinit AUCCR = 0; Mass balance for T-2 toxin Qbal = QC-QL-QK-QF-QM-QR Tmass = AA+AL+AK+AF+AM+AR+Abile+Amet+Aurine Bal = AAO-Tmass ; Mass balance ; Sub-model for T-2 triol : Blood compartment CV1 = (QL1*CVL1+QK1*CVK1+QF1*CVF1+QM1*CVM1+QR1*CVR1)/QC RA1 = QC*(CV1-CA1free) d/dt(AA1) = RA1init AA1 = 0CA1 = AA1/Vblood1CV1mg=CV1*MW1mg CVtotal = CVmg+CV1mg $CA1 free = CA1^{(1-PB1)}$ d/dt(AUCCV1) = CV1init AUCCV1 = 0

Rurine = Kurine*CVK

; Liver compartment RL1 = QL1*(CA1free-CVL1)+Rmet1-Rbile1 d/dt(AL1) = RL1init AL1 = 0CL1 = AL1/VL1CVL1 = AL1/(VL*PL1m)CL1mg=CL1*MW1mg CLtotal = CLmg+CL1mg d/dt(AUCCL1) = CL1init AUCCL1 = 0; Hepatic excretion of T-2 triol Rbile1 = Kbile1*CVL1 d/dt(Abile1) = Rbile1 init Abile1 = 0; Kidney compartment RK1 = QK1*(CA1free-CVK1)-Rurine1 d/dt(AK1) = RK1init AK1 = 0CK1 = AK1/VK1CVK1 = AK1/(VK1*PK1m)CK1mg=CK1*MWmg CKtotal = CKmg+CK1mg ; Urinary excretion of T-2 toxin Rurine1 = Kurine1*CVK1 d/dt(Aurine1) = Rurine1 init Aurine 1 = 0; Fat compartment RF1 = QF1*(CA1free-CVF1) d/dt(AF1) = RF1init AF1 = 0CF1 = AF1/VF1CVF1 = AF1/(VF1*PF1m)CF1mg = CF1*MW1mgCFtotal = CFmg+CF1mg d/dt(AUCCF1) = CF1init AUCCF1 = 0; Muscle compartment $RM1 = QM1^{*}(CA1free-CVM1)$ d/dt(AM1) = RM1init AM1 = 0CM1 = AM1/VM1CVM1 = AM1/(VM1*PM1m)CM1mg=CM1*MW1mg CMtotal = CMmg+CM1mg d/dt(AUCCM1) = CM1

init AUCCM1 = 0

```
; Rest-of-body compartment
RR1 = QR1*(CA1free-CVR1)
d/dt(AR1) = RR1
init AR1 = 0
CR1 = AR1/VR1
CVR1 = AR1/(VR1*PR1)
CR1mg = CR1*MW1mg
d/dt(AUCCR1) = CR1
init AUCCR1 = 0
```

; Mass balance for T-2 triol Qbal1 = QC-QL1-QK1-QF1-QM1-QR1 Tmass1 = AA1+AL1+AK1+AF1+AM1+AR1+Abile1+Aurine1 Bal1 = Amet1-Tmass1 ; Mass balance

References

- (1) Yang, F.; Sun, N.; Liu, Y. M.; & Zeng, Z. L. Estimating danofloxacin withdrawal time in broiler chickens based on physiologically based pharmacokinetics modeling. J. Vet. Pharmacol. Ther. 2015, 38, 174-182.
- (2) Cortright, K. A.; Wetzlich, S. E.; Craigmill, A. L. A PBPK model for midazolam in four avian species. J. Vet. Pharmacol. Ther. 2009, 32, 552-565.
- (3) Henri, J.; Carrez, R.; Meda, B.; Laurentie, M.; Sanders, P. A physiologically based pharmacokinetic model for chickens exposed to feed supplemented with monensin during their lifetime. J. Vet. Pharmacol. Ther. 2017, 40, 370-382.
- (4) Sun, Y. X.; Yao, X.; Shi, S. N.; Zhang, G. J.; Xu, L. X.; Liu, Y. J.; Fang, B. H. Toxicokinetics of T-2 toxin and its major metabolites in broiler chickens after intravenous and oral administration. J. Vet. Pharmacol. Ther. 2015, 38, 80-85.
- (5) European Food Safety Authority Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the risks for human and animal health related to the presence of modified forms of certain mycotoxins in food and feed. EFSA J. 2014, 12, 3916.
- (6) Osselaere, A.; Devreese, M.; Goossens, J.; Vandenbroucke, V.; De Baere, S.; De Backer, P.; Croubels, S. Toxicokinetic study and absolute oral bioavailability of deoxynivalenol, T-2 toxin and zearalenone in broiler chickens. Food Chem. Toxicol. 2013, 51, 350-355.
- (7) Giroir, L. E.; Ivie, G. W.; Huff, W. E. Comparative fate of the tritiated trichothecene mycotoxin, T-2 toxin, in chickens and ducks. Poult. Sci. 1991, 70, 1138-1143.

(8) Chi, M. S.; Robison, T. S.; Mirocha, C. J.; Swanson, S. P.; Shimoda, W. Excretion and tissue distribution of radioactivity from tritium-labeled T-2 toxin in chicks. Toxicol. Appl. Pharmacol. 1978, 45, 391-402.