A computational framework for interspecies pharmacokinetics, exposure and toxicity assessment of gold nanoparticles

Aim: To develop a comprehensive computational framework to simulate tissue distribution of gold nanoparticles (AuNP) across several species. Materials & methods: This framework was built on physiologically based pharmacokinetic modeling, calibrated and evaluated with multiple independent datasets. Results: Rats and pigs seem to be more appropriate models than mice in animal-to-human extrapolation of AuNP pharmacokinetics and that the dose and age should be considered. Incorporation of in vitro and/or in vivo cellular uptake and toxicity data into the model improved toxicity assessment of AuNP. Conclusion: These results partially explain the current low translation rate of nanotechnology-based drug delivery systems from mice to humans. This simulation approach may be applied to other nanomaterials and provides guidance to design future translational studies.

First draft submitted: 12 August 2015; Accepted for publication: 24 September 2015; Published online: 11 November 2015

Keywords: biodistribution • computational nanotoxicology • endocytosis • nanomaterials • PBPK modeling • physiologically based pharmacokinetic modeling • phagocytosis • toxicokinetics
Materials & methods

Data source & model structure

The data for rat and pig PBPK model calibration were obtained from the published literature [25-27]. As detailed in Supplementary Table 1, this model is primarily for AuNP coated with polyethylene glycol (PEG), gum arabic or citrate, and only pharmacokinetic and toxicity data for developing a well-validated model [2,5,23]. Based upon this mouse model [23], the objective of this study was to create a comprehensive computational framework that could simulate the tissue distribution of AuNP across several species, as well as incorporate in vitro and in vivo cellular uptake and toxicity data to inform pharmacokinetics, exposure and toxicity assessment. Therefore, we optimized and extended the mouse model to simulate the kinetics of AuNP in rats and pigs. The rat and pig models were evaluated with independent datasets to ensure the validity of the model. Then, the rodent and porcine models from various exposure scenarios were independently scaled to humans to determine the optimum model for animal-to-human extrapolation of NP pharmacokinetics (Figure 1). The derived optimal human model was then used as a framework for incorporating in vitro and in vivo toxicity data to predict the associated human equivalent doses for risk assessment.

Model parameterization

Physiological parameters for mice, rats, pigs, and humans are provided in Supplementary Table 2 [25,26,29-35]. NP-specific parameters used in the mouse PBPK model [23], such as distribution coefficients and permeability coefficients, were kept the same in the present model. This creates the most parsimonious model by using a minimum number of estimated parameters and applying a generic value for parameters across species. Endocytic parameters for each type of AuNP (application size domain: 13–100 nm) in each species had to be re-estimated by using the same approach used in the mouse model [23] because uptake of NP depends on the size, dose, surface coating, cell type and species [6]. The urine elimination rate in the pig model was estimated by visually fitting to the urine data in the pig study [25]; this optimized parameter value was used in the rat and human models. All NP-specific parameters are provided in Supplementary Table 3.

Model evaluation

The overall goodness of fit between simulated and experimental data was evaluated with linear regression analysis using GraphPad Prism 6 (GraphPad Software Inc., CA, USA). The predictive ability of the rat and pig models was evaluated with other studies where similar types and doses of AuNP were used (Supplementary Table 1) [36,37]. The criterion of a validated model was based on WHO guidelines, namely, a model is considered reasonable if simulation results are within a factor of two of independent experimental data [38]. Sensitivity and uncertainty analyses have been conducted and reported in the mouse model [23] and, therefore, were not repeated in this study.

Model cross-species extrapolation

Model extrapolation from mice, rats and pigs to humans was conducted by changing physiological parameters to be human-specific and keeping NP-specific parameters the same as in the original animal models. The derived human models were then used to predict the blood kinetics of a nanomedicine CYT-6091, a rhTNF-bound PEG-coated 27-nm AuNP, after intravenous (iv.) injection in advanced-
Figure 1. Schematic representation of the study design. (A) (left side): Schematic diagram of the physiologically based pharmacokinetic model for gold nanoparticles in mice, rats, pigs, and humans. PCs is our operational term for various phagocytic cells, including reticuloendothelial system and organ-specific cells, such as liver Kupffer cells, splenic macrophages, kidney mesangial cells, etc. (B) (right side): Flowchart of the physiologically based pharmacokinetic model development, evaluation, dose extrapolation, species extrapolation, and in vitro to in vivo extrapolation processes. Black arrows represent animal-to-animal extrapolation by using animal-, dose- and age-specific physiological and endocytic parameters. Green dashed and blue solid lines represent animal-to-human extrapolation by using human-specific physiological parameters; endocytic parameters were kept the same as those in respective animal models. Green dashed lines indicate unsuccessful extrapolation, while blue solid lines indicate successful extrapolation. Purple lines represent rat-to-human extrapolation and in vitro to in vivo extrapolation of toxicity data of gold nanoparticles. Reference citations are given in square brackets.

*References listed in Supplementary Table 4.

iv.: Intravenous.
stage cancer patients [39]. Besides direct model extrapolation from laboratory animals to humans, a revised approach based on the relative density of phagocytic cells in the liver of juvenile pigs compared with adult humans was tested. Briefly, based on the evidence that the density of Kupffer cells in juvenile pigs is around sevenfold (0.89 × 10^6 vs 0.13 × 10^6 cells/g liver tissue) higher than in adult humans [40,41], in addition to changing physiological parameters to be human-specific, the juvenile pig model was scaled to humans by decreasing the maximum endocytic rates and capacities by sevenfold. Simulations using human models derived from different approaches (mouse model, medium-dose rat model, low-dose rat model, original pig model and revised pig model) were compared with experimental data [39] to determine the optimal human model.

Model application

To show model application in exposure and risk assessment, the optimal human model was used to predict blood and liver Au concentrations after iv. injection with AuNP across a wide dose range (0.001–100 mg/kg). This dose range was selected based on the doses used in the laboratory animals [2,5]. The liver was selected as the target organ because AuNP predominantly accumulate in the liver after exposure regardless of exposure route, dose, size and species [5,42]. To assess the risk of AuNP exposure, a literature review on the in vitro and in vivo toxicity of AuNP was carried out and representative results are provided in Supplementary Table 4. Next, the human equivalent doses associated with representative in vitro cytotoxic concentrations of AuNP in primary human tissue [43] and blood cells [44], as well as the reported in vivo toxic dose in rats [26], were predicted by using the human PBPK model based on the IVIVE and species extrapolation methods [45]. Specifically, the human equivalent doses were the doses when simulated maximum liver Au concentrations were equal to the reported in vitro cytotoxic nominal concentrations or the doses resulting in identical maximum liver Au concentrations in rats where adverse effects were observed.

Results

Model development in rats & pigs

Our mouse PBPK model [23] was scaled to rats and pigs (Figure 1) by using species-specific physiological and endocytic parameters (Supplementary Tables 2 & 3). Model simulation results were well correlated to the observed concentrations or amounts of Au in the blood, liver, spleen, kidneys, lungs and/or urine of rats [27] and pigs [25] after iv. exposure to 0.8 and 2.0 mg/kg AuNP, respectively (Figure 2). The determination coefficients (R^2) between simulated and measured data were 0.98 for both models. These results suggest that the rat and pig PBPK models at doses from 0.8 to 2.0 mg/kg have been calibrated properly.

Evaluation of the rat & pig models

The predictive capability of the rat and pig models was then evaluated with independent datasets [36,37] (Supplementary Table 1). Both models adequately simulated the observed liver and spleen concentrations of Au, differing less than twofold (Supplementary Figure 1), which is considered ‘validated’ according to the WHO PBPK model evaluation criterion [38]. These results suggest that both the rat and pig models have excellent predictive capability of the tissue distribution of AuNP.

Model extrapolation from medium to low doses

Since the doses used in the animal studies were generally higher than the actual doses that humans are exposed to and NP pharmacokinetics is dose dependent, it is critical to have a low-dose model [5,39]. Therefore, the rat model for medium doses (~1.0 and ~0.01 mg/kg were defined as medium and low doses, respectively) was extrapolated to simulate low-dose kinetics of AuNP [26] using low-dose-specific endocytic parameters (Supplementary Table 3). Simulation results matched the observed Au concentrations [26] in blood, liver, spleen, kidneys and lungs of rats after low-dose iv. administration (R^2 = 0.98; Supplementary Figure 2), suggesting that the low-dose model was calibrated properly.

Model application: predictions of dose-dependent tissue distribution

To reveal NP dose-dependent kinetics, we employed the medium-dose and low-dose rat models to predict percentage tissue distribution of the injected dose (%ID). The results showed that both absolute (%ID) and relative (%ID/g tissue) distributions primarily to phagocytic organs (e.g., liver, spleen and lungs) were consistently several fold higher in the medium-dose than in the low-dose groups (Figure 3). Next, we compared the simulated endocytic rates in liver and spleen of rats after iv. injection with the same dose of AuNP (0.01 mg/kg) using both the models. We noticed that the low-dose model-predicted liver and spleen endocytic rates were approximately four- to fivefold lower than the predicted rates by the medium-dose model (Supplementary Figure 3). These data suggest that, besides surface coatings and sizes [6], endocytosis of AuNP is highly dependent on the dose and it may be a key contributing factor to their
Figure 2. Rat and pig physiologically based pharmacokinetic model calibration. Plots of experimentally determined [25,27] (symbols) versus rat (A–C) and pig (E–G) model-predicted (lines) concentrations of gold nanoparticles in blood (or plasma), tissues and urine. (D) (Rat model) and (H) (pig model) represent overall regression analysis results between measured and simulated data. Lines in (D & H) represent the regression lines. R^2: Determination coefficient.
dose-dependent pharmacokinetics, especially when extrapolating across species.

Evaluation of model extrapolation from mice, rats or pigs to humans

To assess which of the studied PBPK models can be extrapolated successfully to humans, we scaled the rodent and porcine models to humans by using the human-specific physiological parameter (e.g., blood flow) and keeping the endocytic parameters the same as those in each respective animal model (Figure 1). The derived human models were employed to simulate blood concentrations of AuNP-based nanomedicine (CYT-6091) in humans [39]. As shown in Figures 1 and 4, the human models derived from the mouse model, medium-dose rat model or original pig model failed to capture the blood kinetic profiles ($R^2 < 0.87$), but the human models derived from the low-dose rat model and the revised pig model properly simulated the measured blood levels of AuNP, with the R^2 values being 0.9427 and 0.9368, respectively. Based on the R^2 value, the human model derived from the low-dose rat model was selected as the optimal human model for subsequent analyses.

Discussion

The pharmacokinetics and safety of NP are routinely evaluated in laboratory animals prior to applications in humans. Thus, it is crucial to understand interspecies difference in NP pharmacokinetics before we confidently use data generated in laboratory animal species to make inferences in humans. The present study successfully established a comprehensive computational framework that properly simulated tissue distribution of AuNP across several species. One of the most important findings is that rats and pigs appear to be more appropriate model species than mice in animal-to-human extrapolation of NP pharmacokinetics and the dose and age should be considered for this extrapolation. This computational comparative analysis of NP pharmacokinetics is novel in the field of nanotechnology.

The key finding that rats and pigs seem to be more suitable models than mice may be a function of different surface coatings, sizes, doses, ages and/or species/strain/breed among the different studies used in model calibration and evaluation [23,25-27,39]. The explanation of surface coatings is unlikely because the mouse and human studies both used PEG-coated AuNP [23,39], a coating that minimizes species differences in protein corona effects [5-6, 9] that would be expected for NP of different coatings that facilitate protein adsorption. In addition, the particle size difference is less likely to be of concern because the sizes used in the mouse, rat, pig and human studies were
quite close (13–27 nm) [23,25-27,39]. The fact that the
doses (0.001286–0.01726 mg/kg) used in the human study
[39] are close to the low-dose rat study [26], but
far lower than the medium-dose rat study [27], suggests
that dose-dependent disposition is the likely factor. A
second possible reason is the difference in the relative
density of phagocytic cells in major organs between
juvenile pigs and adult humans [40,41]. Therefore, we
revised the original pig-model-derived human model
based on the relative density of Kupffer cells in juve-
nile pigs and adult humans [40,41]. Simulation results
from the revised pig-model-derived human model
were well correlated with the observed human data
(Figure 4). These results suggest that extrapolations
of NP pharmacokinetics from rats or pigs to humans
are plausible provided that the species-specific model
parameters are adjusted appropriately. The fact that
the present models converged does imply that it is pos-
sible to conduct interspecies extrapolations for such
covered particles. However, whether this conclusion
applies to AuNP with other surface functionalizations
remains to be investigated.

The reason that rats and pigs may be more suitable
models than mice in extrapolating NP pharmacoki-
netics to humans is multifaceted. Anatomically, the
mouse and pig spleen capillaries are nonsinusoidal
with predominant blood flow through the open-cir-
culation route where NP filtration is mainly regulated
by barrier cells; but the spleen capillaries in rats and
humans are both sinusoidal, where the large part of
blood flows through open-circulation routes with NP
filtration at interendothelial cell slits [46]. The liver
capillaries of mice, rats, pigs and humans are all sinu-
soidal with open fenestrae, but the average number
of fenestrae per square micrometer in mice is lower
than that of rats and humans (this number is 14, 20
and 20 in mice, rats and humans, respectively, but
it is not available for pigs) [47]. Blood flows to some
organs (e.g., liver, skin) are age- and species-depen-
dent [48,49]. Age difference in selected studies may
thus be an important factor in our observed results.

Immunologically, there are species differences in the
plasma membrane receptor expression and function-
ality of macrophages [50] that may play a significant
role in the NP opsonization, endocytosis and clear-
ance. Physiologically, there are several parameters
(e.g., liver weight fraction of body weight) that greatly
affect NP pharmacokinetics, and rats and pigs are
closer to humans than mice in these parameters [23].
The fact that the majority of NP-based drug formul-
ations that are seemingly effective to decrease tumor
sizes in mice, but are not effective in humans, further
supports this supposition [51]. Overall, our finding is
novel and it further questions the conventional wis-
dom of nanotoxicology evaluation solely using the
mouse model. Nevertheless, at this stage, definitive
conclusion cannot be made because there are differ-
ences in the AuNP used in different studies for model
 calibration, and strain differences within rodents
could also play a role. While available data are very
limited, the types of physiological and pharma-
cokinetic processes included in this model need to be
taken into account whenever results seen in a rodent
model are attempted to be extrapolated to humans.

Additional comparative pharmacokinetic studies
with rodents and pigs at similar ages using the same
type of NP are needed to confirm these findings.

The above-mentioned fundamental anatomical,
immunological and physiological differences between
species are difficult to compensate for in a mathem-
atical model because there is lack of sufficiently
granular in vivo pharmacokinetic data in order to
separate out the different mechanisms. Nevertheless,
a computational framework built on PBPK modeling
provides the most promising approach to integrate
various mechanistic factors into whole body cross-
species predictive models. It has been demonstrated
that PEGylation of AuNP is unstable in vivo due to
the degradation of the polymer shell by proteolytic
enzymes in the liver [52]. The effect of the unstabil-
ity of PEGylation on AuNP pharmacokinetics is not
mathematically evaluated due to the lack of time-
intensive pharmacokinetic data for the same AuNP
with and without PEGylation in more than two spe-
cies. Another issue is that particle physicochemical
properties, such as the state of agglomeration and
surface charge, are not mathematically introduced
into the model because there are not adequate data to
simulate these factors. Once the aforementioned data
are available, this present framework provides a com-
putational platform to incorporate various factors to
decipher the pharmacokinetic characteristics of NP.

To demonstrate model application in expo-
sure and risk assessment, a comprehensive litera-
ture review on the AuNP toxicity was conducted
(Supplementary Table 4). In order to provide a con-
servative risk assessment, the lowest reported toxic
centrations of AuNP in rats [26], human tissue [43]
and blood cells [44] were selected. The associated
human equivalent doses were calculated by using the
optimal human model (Figure 5). The congruence
of these results suggests that our model provides a
framework to integrate in vitro and in vivo toxicity
studies to inform NP exposure and risk assessment.
These results are informative for the design of human
clinical trials.

Of note, this framework can be used to correlate
NP in vitro cellular uptake to in vivo pharmacokinet-
Figure 4. Physiologically based pharmacokinetic model species extrapolation (for [A–D], please see above; for [E & F], please see facing page). (A) Comparisons of experimental (symbols) versus predicted (lines) blood concentrations of gold nanoparticles after intravenous injection (0.005857 mg/kg) using human models derived from different animal models. Animal-to-human extrapolation was conducted by changing the physiological parameters to be human-specific and keeping the endocytic and other nanoparticle-specific parameters the same as in the original animal models.
ics, thus raising a possibility of developing NP PBPK models using alternative approaches. To be more specific, for all NP-specific parameters among different models in this framework, the distribution and permeability parameters are the same across models, but the endocytic parameters are model-specific. Thus, NP PBPK models may be created based on the present model framework and using species- and dose-specific endocytic parameters measured in vitro. Currently, there are a number of in vitro studies investigating cellular uptake of various NP, including AuNP, but most of these studies focus on uptake mechanisms and NP’s fate after cellular internalization [6]. The experimental designs of available studies make it difficult to conduct IVIVE. To address this significant data gap, the present model was designed to include in vitro cellular uptake kinetic parameters. The following suggestions need to be considered in designing future cellular uptake studies. First, cell models should include the type of cells in which NP mainly accumulate in vivo, such as Kupffer cells and spleen/ lung macrophages which are the rate-limiting factors in systemic NP biodistribution. Wherever possible the primary cell type should be used rather than an immortalize cell line. A time-dependent study should also be conducted to identify the optimal incubation time when the uptake rate is at the maximum prior to a concentration-dependent study to determine the uptake kinetics. Data should be expressed in the unit of ‘ng/h/cell,’ so that the data can be converted to ‘μg/h’ for a particular tissue. Next, an appropriate mathematical equation (e.g., the Hill function) should be used to fit the concentration-dependent uptake kinetic data, in which related kinetic parameters can be calculated and incorporated into the present PBPK model. In addition to the in vitro cellular uptake studies, in vitro toxicity studies using the same human cells, in vivo toxicity studies using rats at <0.01 mg/kg doses and mechanistic pharmacokinetic modeling studies taking into account species differences in physiology and anatomy are warranted. Finally, this model based on PEG-coated AuNP does not take into account species differences in protein corona formation which could further impact PBPK model structure and interspecies extrapolations [9]. An approach to deal with timescale differences in protein corona formation in non-PEGylated NP has been addressed [9]. All of these proposed suggestions should be incorporated into the present computational framework to improve the risk assessment of AuNP.

Conclusion & future perspective

Our laboratory successfully developed an integrative comprehensive comparative PBPK model that predicts the pharmacokinetics of AuNP across multiple species and provides a foundation to incorporate in vitro and in vivo toxicity data for quantitative risk assessment. Simulation results provide systematic guidance for the design of future studies. This comprehensive comparative PBPK modeling approach could be extrapolated to other types of nanomaterials and thus opens a quan-

Figure 4. Physiologically based pharmacokinetic model species extrapolation (cont.). (B–F) Represent regression analysis results between experimental [39] and predicted values for different models. Different symbols indicate results from different dose groups. The black straight lines represent perfect agreement between experimental and predicted data. The red dashed lines represent regression lines. Regression equations are given in each panel. R²: Determination coefficient.

<table>
<thead>
<tr>
<th>Model Description</th>
<th>measured concentration (ng/ml)</th>
<th>Predicted concentration (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse model derived</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Medium-dose rat model derived</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Low-dose rat model derived</td>
<td>0.10</td>
<td>0.10</td>
</tr>
<tr>
<td>Original pig model derived</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Revised pig model derived</td>
<td>0.20</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Table: Comparison of measured and predicted concentrations for different models.
Figure 5. *In vitro* to *in vivo* extrapolation and species extrapolation of doses and toxicity of gold nanoparticles. Blue and red lines represent model-predicted maximum concentrations of gold nanoparticles in the liver and blood, respectively, of humans after intravenous injection (0.001–100 mg/kg). The dashed arrows point to concentrations of gold nanoparticles where *in vitro* cytotoxicity (13 μg/ml) or hemolysis (50 μg/ml) was observed in primary human dermal fibroblasts [43] and blood cells [44] or where liver toxicity (0.01 mg/kg) was observed in rats [26]. Reference citations are given in square brackets. The solid arrows point to the model-predicted human equivalent dose (HED) associated with the reported *in vitro* cytotoxicity (HED = 1 mg/kg), hemolysis (HED = 5 mg/kg) and *in vivo* toxicity (HED = 0.005 mg/kg).

- Changes on the expression of genes related to detoxification and lipid metabolism in liver [26].
- Increased apoptotic rate by 23–44% after 72 h exposure in primary human dermal fibroblasts [43].
- ~50% hemolysis after 24 h exposure [44].

Executive summary

- Interspecies and *in vitro* to *in vivo* extrapolations of pharmacokinetic and toxicology data are crucial for successful translation from laboratory studies to humans and for proper risk assessment of nanomaterials.
- We developed a comprehensive computational framework built on physiologically based pharmacokinetic modeling that successfully simulated tissue distribution of gold nanoparticles across a wide dose range and several species, including mice, rats and pigs.
- Animal-to-human extrapolation of nanomaterial pharmacokinetics was performed from mice, rats and pigs, respectively, to humans.
- Rats and pigs seem to be more appropriate models than mice in species extrapolation of nanomaterial pharmacokinetics to humans and that the dose and age should be considered.
- Our results provide a scientific basis for researchers to select the most appropriate animal model and dosing paradigm for conducting future nanomaterial studies to increase the research relevance to humans.
- Our model can be used to incorporate *in vitro* and *in vivo* cellular uptake and toxicity data to improve risk assessment of nanomaterials.
- This simulation approach may be applied to other types of nanomaterials and provides guidance to the design of future pharmacokinetic, toxicological and translational studies of nanomaterials.
The first review article on the applications of physiologically based pharmacokinetic modeling in nanomaterial pharmacokinetics and toxicology studies.

References
Papers of special note have been highlighted as:
• of interest; •• of considerable interest

•• Describes the impact of biocorona formation kinetics on the pharmacokinetics of nanomaterials across species.

•• The first review article on the applications of physiologically based pharmacokinetic modeling in nanomaterial pharmacokinetics and toxicology studies.

• Develops and applies the principles of nanomaterial dosimetry in vitro and outlines an approach for simulating nanoparticle particokinetics in cell culture systems.

• Proposes a predictive toxicological approach for the assessment of nanomaterial hazards.

Lin, Monteiro-Riviere, Kannan & Riviere

26 Balasubramanian SK, Jititiw J, Manikandan J, Ong CN, Yu LE, Ong WY. Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 31(8), 2034–2042 (2010).

Pharmacokinetic model database at the Institute of Computational Comparative Medicine at Kansas State University. http://iccm.k-state.edu/

• Reports the plasma pharmacokinetics of a gold nanoparticle-based nanomedicine in human cancer patients.

- Demonstrates that gold nanoparticles coated with polymer shells can change their physicochemical properties *in vivo* due to degradation of the polymer shell by proteolytic enzymes in the liver.