
F O R U M

Performance Assessment and Translation of

Physiologically Based Pharmacokinetic Models From

acslX to Berkeley Madonna, MATLAB, and R Language:

Oxytetracycline and Gold Nanoparticles As Case

Examples
Zhoumeng Lin,*,1 Majid Jaberi-Douraki,*,† Chunla He,‡ Shiqiang Jin,*,§

Raymond S. H. Yang,¶,k Jeffrey W. Fisher,kj and Jim E. Riviere*

*Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of
Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506; †Department of Mathematics,
College of Arts and Sciences, Kansas State University, Manhattan, Kansas 66506; ‡Department of
Epidemiology and Biostatistics, College of Public Health, The University of Georgia, Athens, Georgia 30602;
§Department of Statistics, College of Arts and Sciences, Kansas State University, Manhattan, Kansas 66506;
¶Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and
Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523; kRay Yang Consulting LLC, Fort
Collins, Colorado 80526; and kjDivision of Biochemical Toxicology, National Center for Toxicological Research,
U.S. Food and Drug Administration, Jefferson, Arkansas 72079
1To whom correspondence should be addressed at Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College
of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, P200 Mosier Hall, Manhattan, KS 66506. Fax: (785) 532-4953. E-mail: zhoumeng@ksu.edu.

ABSTRACT

Many physiologically based pharmacokinetic (PBPK) models for environmental chemicals, drugs, and nanomaterials have
been developed to aid risk and safety assessments using acslX. However, acslX has been rendered sunset since November
2015. Alternative modeling tools and tutorials are needed for future PBPK applications. This forum article aimed to: (1)
demonstrate the performance of 4 PBPK modeling software packages (acslX, Berkeley Madonna, MATLAB, and R language)
tested using 2 existing models (oxytetracycline and gold nanoparticles); (2) provide a tutorial of PBPK model code
conversion from acslX to Berkeley Madonna, MATLAB, and R language; (3) discuss the advantages and disadvantages of
each software package in the implementation of PBPK models in toxicology, and (4) share our perspective about future
direction in this field. Simulation results of plasma/tissue concentrations/amounts of oxytetracycline and gold from
different models were compared visually and statistically with linear regression analyses. Simulation results from the
original models were correlated well with results from the recoded models, with time-concentration/amount curves nearly
superimposable and determination coefficients of 0.86–1.00. Step-by-step explanations of the recoding of the models in
different software programs are provided in the Supplementary Data. In summary, this article presents a tutorial of PBPK
model code conversion for a small molecule and a nanoparticle among 4 software packages, and a performance
comparison of these software packages in PBPK model implementation. This tutorial helps beginners learn PBPK modeling,
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provides suggestions for selecting a suitable tool for future projects, and may lead to the transition from acslX to alternative
modeling tools.

Key words: acslX; Berkeley Madonna; MATLAB; PBPK modeling; R language.

Physiologically based pharmacokinetic (PBPK) modeling is a
commonly used computational method in pharmacology and
toxicology that describes the absorption, distribution, metabo-
lism, and elimination of various chemicals in the body based on
interrelationships among key physiological, biochemical, and
physicochemical determinants (Bischoff, 1980; Ramsey and
Andersen, 1984; Teorell, 1937; WHO, 2010; Yang et al., 1995).
PBPK models have wide applications, including drug discovery
and development (Jones et al., 2015; Rowland et al., 2011), the
design of drug therapeutic regimens (Lin et al., 2015a; Moss et al.,
2015), drug withdrawal interval estimation (Buur et al., 2006; Lin
et al., 2016a; Riviere et al., 2016), and risk assessment of environ-
mental toxicants and nanomaterials (Andersen et al., 1987;
Andersen and Krishnan, 1994; Breckenridge et al., 2016;
Campbell et al., 2016; Fisher et al., 1998; Li et al., 2010; Lin et al.,
2015b; Mumtaz et al., 2012a; Reddy et al., 2005; Smith et al., 2014;
Yang et al., 2015a).

Typically, a PBPK model for a particular compound is built
using programming software, such as acslX (AEgis Technologies
Group, Huntsville, Alabama, USA), Berkeley Madonna
(University of California at Berkeley, California, USA), MATLAB
(The MathWorks, Inc., Natick, Massachusetts, USA), and R lan-
guage, among which acslX was the most commonly used PBPK
modeling tool in the fields of toxicology, risk assessment (Lin
et al., 2013; Martin et al., 2015; Reddy et al., 2005; Teeguarden
et al., 2013; Yang et al., 2015b; Yoon et al., 2011), and veterinary
pharmacology (Buur et al., 2006; Craigmill, 2003; Lin et al., 2016d;
Yang et al., 2014a). These software systems are based on differ-
ent computer languages (ie, semantics and syntax), thus the
conversion of a PBPK model between different software is not
straightforward. As a result, pharmacologists, toxicologists, and
health risk assessors usually need to learn specific program
attributes in order to know how to apply PBPK models built on
an unfamiliar programming language. Therefore, the transla-
tion of PBPK model codes has become a critical issue limiting
PBPK model application; this limitation has been emphasized in
workshop reports by a panel of PBPK experts (Loizou et al., 2008;
McLanahan et al., 2012) and also in a series of publications from
the Agency for Toxic Substances and Disease Registry (el-Masri
et al., 2002; Ruiz et al., 2010, 2011, 2014; Mumtaz et al., 2012a,b).

AEgis Technologies Group announced that acslX support
and sales would be discontinued in November 2015. All pub-
lished PBPK models using acslX will require recoding in a differ-
ent software program and for future applications, new models
need to be constructed using alternative tools. Given this situa-
tion, the Society of Toxicology (SOT) Biological Modeling
Specialty Section (BMSS) has organized a series of webinars
introducing various alternative modeling platforms. However,
there are no articles detailing how to convert PBPK model codes
between different language platforms. To our knowledge, there
are no published performance assessments on these popular
software packages.

To help address the PBPK model code translation issues and
facilitate the transition of model coding from acslX to other
software platforms for future toxicology and risk assessment
applications, the objectives of this forum article were: (1) to
demonstrate the performance of the 4 PBPK modeling software

tested using 2 existing models from our laboratory, oxytetracy-
cline and gold nanoparticles; (2) to provide a tutorial on how to
convert PBPK model code from acslX to Berkeley Madonna,
MATLAB, and R language; (3) to discuss the strengths and weak-
nesses of each software platform in the applications of PBPK
models; and (4) to share the authors’ perspectives about the
future direction in this field. Recently published PBPK models
for oxytetracycline and gold nanoparticles (Figure 1; representa-
tives of small molecules and nanomaterials, respectively) using
acslX were selected as examples because these models include
multiple routes of exposure (ie, IV, IM, oral, and SC) and have
been validated for route-, dose-, and species-extrapolation
using independent data (Lin et al., 2015a, 2016b). This tutorial
can also be a case study for beginners to learn PBPK modeling.

TRANSLATION OF MODEL CODES FROM ACSLX
TO BERKELEY MADONNA, MATLAB, AND
R LANGUAGE

In general, the PBPK modeling process includes several common
modeling steps as listed in Figure 2 regardless of the software
used. However, for each modeling step the specific-coding
method can be different between software systems. Table 1 lists
an overall comparison of the coding methods for several key
modeling steps across the 4 program systems. Detailed descrip-
tions of PBPK model code conversions from acslX to the other 3
software programs are provided in the Supplementary Data.
Readers are also encouraged to watch the SOT BMSS webinars
(Buyukozturk and Paxson, 2016; Hinderliter and Ruark, 2016;
Loizou, 2016; McDougall, 2016; Phillips, 2016; Setzer, 2016) for
additional information not covered in this article.

Note that there are many different approaches to recode
PBPK models. We are showing one approach using 2 case exam-
ples. Recently, a series of physiologically based pharmacoki-
netic/pharmacodynamic (PBPK/PD) models (or termed
biologically based dose response models) for the thyroid system
and perchlorate in rats and humans of different ages that were
originally coded in acslX (Lumen et al., 2013; McLanahan et al.,
2008; Fisher et al., 2012, 2013) have been converted to R language
(EPA, 2016). These works also provide examples regarding how
to convert PBPK models from acslX to R language (EPA, 2016).
Representative PBPK model codes for oxytetracycline and gold
nanoparticles in acslX, Berkeley Madonna, MATLAB, and R lan-
guage are provided in the Supplementary Data. Example acslX
executable runtime files or MATLAB files are also provided in
Supplementary Data. These example files are compiled together
into a single Word document. Individual files in software-
specific formats are available upon request.

Comparisons of simulation results (ie, model outputs) of
oxytetracycline plasma concentrations following a single IV
injection (5 mg/kg) and a single oral exposure (100 mg/kg) in
dogs between the original acslX model and our recoded models
are shown in Figures 3A and B, respectively. Simulation results
from the acslX, Berkeley Madonna, MATLAB, and R language
models were almost identical and visually superimposed.
Determination coefficients (R2) of linear regression analyses
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FIG. 1. A schematic of the PBPK model for oxytetracycline in canine (A) and for gold nanoparticles in swine (B). IM, IV, and oral represent intramuscular, intravenous,

and oral exposures, respectively. Ka, Kst, Kint, KurineC, and Kdiss (unit: h�1) represent intestinal absorption, stomach emptying, intestinal transition, urine elimina-

tion, and oxytetracycline dissolution rate constants, respectively. Frac, fraction of oxytetracyline that is immediately available for absorption following IM injection.

PCs, phagocytic cells. These PBPK model structures were adapted from our earlier publications (Lin et al. 2015a; 2016b).

FIG. 2. A general flowchart of the common modeling steps among the 4 PBPK modeling systems. These 4 programming systems include acslX, Berkeley Madonna,

MATLAB, and R language. The overall differences in the PBPK model coding among these 4 systems are listed in Table 1 and explained in detail in the text. PBPK, phys-

iologically based pharmacokinetic.
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between acslX and Berkeley Madonna results, between acslX
and MATLAB results, between acslX and R language results
were 1.00, 0.87, and 1.00, respectively, for the IV exposure simu-
lation (5 mg/kg) and were 1.00 for all for the oral exposure simu-
lations (Table 2). Determination coefficients for other exposure
scenarios were all close to 1.00, except the one between acslX
and MATLAB results for the IV exposure (10 mg/kg), which was
0.86 (Table 2). Overall, these results from the recoded models
are highly correlated with the original model simulations, indi-
cating successful translation of the original oxytetracycline
model from acslX to Berkeley Madonna, MATLAB, and R
language.

Figures 3C and D show comparative simulations of plasma
gold concentrations and liver gold amounts following a single
IV injection (2 mg/kg) of gold nanoparticles in pigs between the
original acslX model and our recoded models in Berkeley
Madonna, MATLAB, and R language. Similar to oxytetracycline,
the simulations of gold concentrations/amounts from different
models were almost identical and the determination coeffi-
cients were close to 1.00 (ie, 0.96–1.00). These results suggest
that we have also successfully translated the original gold
nanoparticle model from acslX to Berkeley Madonna, MATLAB,
and R language.

Besides determination coefficients from regression analyses,
PBPK model performance can be assessed with mean absolute
percentage error (MAPE) based on the following criteria: (1)
acceptable prediction: MAPE < 50%; (2) good prediction: 10% <

MAPE < 20%; and (3) excellent prediction: MAPE < 10% (Chen
et al., 2015; Cheng et al., 2016; Mumtaz et al., 2012a; Rayer, 2007).
As shown in Table 2, MAPE values for all comparisons were <

10%, except the one 18.67% for gold nanoparticles between
acslX and Berkeley Madonna models. These results further con-
firm that both the oxytetracycline and gold nanoparticle models
have been successfully translated from acslX to Berkeley
Madonna, MATLAB, and R language, with the simulation out-
puts between each other correlated well.

In the field of toxicology, currently there are no hard fast cri-
teria for assessing the consistency of simulation results from a
PBPK model coded in different programs. However, in the field
of drug development, there are well-established approaches
and criteria to compare whether the pharmacokinetics of 2
drugs (a reference drug and a test drug) is equivalent (FDA,
2003). Specifically, FDA assesses bioequivalence based on phar-
macokinetic endpoints such as Cmax (peak plasma concentra-
tion) and AUC (area under the plasma concentration time
curve) that are reflective of rate and extent of absorption,
respectively. In this study, we also determined the Cmax and
AUC ratios between the recoded models and the original model
based on the simulation data from Figure 3. The purpose of our
analyses was to assess the simulation performance of different
models using the 2 key pharmacokinetic endpoints (Cmax and
AUC). We found that the calculated ratios were between 81%
and 100% (Table 3).

We anticipate that performance assessment for PBPK mod-
els coded in different programs will become an issue in the
future. Before the criteria of PBPK model performance assess-
ment are established, we propose that one important check on
performance of a PBPK model between different programming
platforms can be carried out as follows: (1) compare the simu-
lated concentration-time profile visually, (2) conduct regression
analysis between initial model-predicted and recoded model-
predicted results, (3) calculate the MAPE value between model
outputs, (4) determine the Cmax ratio between models, and (5)
calculate the AUC ratio between models, as done in this study.T
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THE NEED FOR A TUTORIAL

Due to the wide application of PBPK models in toxicology, there
are numerous review articles and textbooks on this topic (Lin
et al., 2016a; Peters, 2012; Reddy et al., 2005). However, the major-
ity of existing works only provide theoretical descriptions of
PBPK modeling methodology, without specific programming
examples. As a result, it is difficult for beginners to learn pro-
gramming techniques. This article represents useful examples
and a structured solution to help overcome this limitation,
thereby helping future students to acquire this technique.

The PBPK model codes can be adapted and expanded to cre-
ate new PBPK models for other chemicals or nanomaterials. The
PBPK models are applicable to small molecular weight drugs or
nanomaterials in different species (ie, mice, rats, dogs, pigs, and
humans). The models are coded to describe multiple routes of
exposure or dosing (ie, oral, IV, IM, and SC administrations),
both flow-limited and membrane-limited (or diffusion-limited)
compartments, as well as both single and repeated exposures.
Equations for other processes, such as protein binding and hep-
atic metabolism, are available from the literature (Lin et al.,
2011; Loccisano et al., 2012; Yang et al., 2014b; Yoon et al., 2009)
and can be easily incorporated into the present models.

ADVANTAGES AND DISADVANTAGES OF
EACH SOFTWARE PACKAGE IN THE
IMPLEMENTATION OF PBPK MODELS
INTENDED FOR RISK ASSESSMENT

There are many guidance documents for PBPK-based risk
assessment (Andersen and Krishnan, 1994; EPA, 2006; Loizou
et al., 2008; Thompson et al., 2008; WHO, 2010; Yang et al., 1995).
In general, the application of PBPK models in risk assessment
involves 4 steps: (1) choice of critical studies; (2) selection and
implementation of PBPK models; (3) evaluation of dose metrics;
and (4) determination and extrapolation to human exposure
levels. PBPK models should be selected to be consistent with the
critical studies for deriving the point of departure in terms of
the species, life stages, dose ranges, exposure routes and end-
points (dose metrics and target tissues), as well as the objectives
of risk assessment. A checklist of key aspects that should be
considered in selecting PBPK models for a given risk assessment
has been provided in a PBPK modeling guidance document by
the World Health Organization (WHO, 2010). This article focuses
on discussing the advantages and disadvantages of each soft-
ware package with respect to implementation of PBPK models
in risk assessment, for which typically 3 aspects should be

FIG. 3. Comparisons of simulation results between original and recoded models. Measured data represent plasma oxytetracycline concentrations in canine following a

single 5 mg/kg IV (A) (Baggot et al., 1978) or 100 mg/kg oral exposure (B) (Immelman, 1977), or plasma gold concentrations (C) or liver gold amounts (D) in swine following

a single 2 mg/kg IV exposure (Fent et al., 2009). Green, red, black, and purple dashed lines represent simulation results from acslX, Berkeley Madonna, MATLAB, and R

language models, respectively. The simulated concentration/amount data from different models were so close that the kinetic curves were hardly distinguishable

from each other (Online figure in color.).
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considered, including extrapolation across exposure paradigms,
among species, and characterizing the population variability. A
general comparison of these 4 software packages in the imple-
mentation of PBPK models in risk assessment is provided in
Table 4 and is described in detail below.

Extrapolation across exposure paradigms
Extrapolation across exposure paradigms includes route-to-route,
high- to low-dose, and short- to long-term (or vice versa) extrapo-
lations. These extrapolations generally involve changing a few
parameters describing the dosing scenario, such as the dose level,
dosing interval, and exposure duration. This can be implemented
in acslX, MATLAB, or R language by writing an executable file with
the study-specific exposure parameter values to call the PBPK
model to generate simulation results that are specific to a given
study. In acslX, this executable file is called M script file or runtime
file; in MATLAB it is a regular MATLAB file; and in R language it is
just a simple R script file. In Berkeley Madonna, however, there is
only 1 file, the Equation file, for the model; since extrapolation

across exposure paradigms only needs to change a few parame-
ters, this can be done by assigning new values to those parameters
in the Parameter Window. Alternatively, in the Equation file, by
“Commenting in and out” (ie, using curved brackets, {}, to include
or exclude a section of the parameters to be used or ignored by the
software during a computer simulation) of a detailed section of
parameter values for a specific species and/or experimental condi-
tions, PBPK modeling may be achieved for the study of interest.
An alternative approach is to create an individual model file for
each study in Berkeley Madonna.

Interspecies extrapolation
Interspecies extrapolation requires changing more parameters,
including body weight, cardiac output, tissue volumes, blood
flows, and depending on the needs, some chemical-specific
parameters. Similar to exposure paradigm extrapolation, we
can write an executable file with new parameter values to call
the PBPK model to run a new species-specific simulation in
acslX, MATLAB, or R language. This approach is used in a recent

Table 2. Determination Coefficients of Linear Regression Analyses and MAPE Values in the Comparisons Between Initial Model-Predicted and
Recoded Model-Predicted Results

Exposure Paradigms R2 (MAPE) References

Route Dose (mg/kg) Number of Injections Species Matrix Substance Berkeley Madonna MATLAB R Language

IV 5 1 Canine Plasma OTC 1.00 (4.13%) 0.87 (1.68%) 1.00 (0.22%) (1)
Oral 100 1 Canine Plasma OTC 1.00 (2.07%) 1.00 (2.38%) 1.00 (0.15%) (2)
IM 20 1 Canine Plasma OTC 1.00 (0.00%) 1.00 (0.70%) 1.00 (0.10%) (3)
IV 10 1 Canine Plasma OTC 1.00 (4.14%) 0.86 (1.29%) 1.00 (0.16%) (4)
IM 20 1 Canine Plasma OTC 1.00 (0.00%) 1.00 (0.82%) 1.00 (0.06%) (5)
Oral 50 1 Canine Plasma OTC 1.00 (2.08%) 1.00 (2.47%) 1.00 (0.15%) (2)
Oral 44 1 Canine Plasma OTC 1.00 (1.11%) 1.00 (1.70%) 1.00 (0.14%) (6)
Oral 50 2 Canine Plasma OTC 1.00 (1.36%) 1.00 (1.59%) 1.00 (0.11%) (2)
Oral 25 5 Canine Plasma OTC 1.00 (1.19%) 1.00 (1.22%) 1.00 (0.05%) (7)
Oral 25 5 Canine Liver OTC 1.00 (1.24%) 1.00 (1.33%) 1.00 (0.07%) (7)
Oral 25 5 Canine Kidney OTC 1.00 (1.13%) 1.00 (1.12%) 1.00 (0.06%) (7)
Oral 25 5 Canine Muscle OTC 1.00 (1.68%) 1.00 (2.86%) 1.00 (1.68%) (7)
IV 2 1 Swine Plasma AuNP 1.00 (18.67%) 0.96 (0.13%) 1.00 (0.01%) (8)
IV 2 1 Swine Liver AuNP 1.00 (0.18%) 1.00 (0.00%) 1.00 (0.00%) (8)

AuNP, gold nanoparticles; MAPE, mean absolute percentage error; IM, intramuscular; IV, intravenous; OTC, oxytetracycline; R2, determination coefficient of a linear

regression analysis; (1) Baggot et al. (1978); (2) Immelman (1977); (3) Immelman and Dreyer (1981); (4) von Wittenau and Yeary (1963); (5) Kikuvi et al. (2001); (6) Cooke

et al. (1981); (7) von Wittenau and Delahunt (1966); (8) Fent et al. (2009). The ODE solvers used in different software platforms are Gear’s stiff algorithm (ie, IALG ¼ 2),

Runge-Kutta 4, ode23 [Runge-Kutta (2,3)], and Isoda (ordinary differential equation solver for stiff or nonstiff system; the default method in the deSolve package) for

acslX, Berkeley Madonna, MATLAB, and R language, respectively. R2 and MAPE values were rounded to 2 decimal places.

Table 3. Comparison of the AUC and Cmax Between Initial Model-Predicted and Recoded Model-Predicted Results

Dose Metrics Route Dose (mg/kg) Number of
Injections

Species Matrix Substance Berkeley Madonna MATLAB R Language References

AUC IV 5 1 Canine Plasma OTC 95.81% 98.05% 99.95% (1)
Oral 100 1 Canine Plasma OTC 99.29% 100.10% 100.05% (2)
IV 2 1 Swine Plasma AuNP 84.99% 99.77% 100.28% (3)
IV 2 1 Swine Liver AuNP 99.36% 100.00% 100.00% (3)

Cmax IV 5 1 Canine Plasma OTC 95.71% 80.98% 100.11% (1)
Oral 100 1 Canine Plasma OTC 99.59% 99.82% 100.09% (2)
IV 2 1 Swine Plasma AuNP 93.06% 88.02% 100.00% (3)
IV 2 1 Swine Liver AuNP 99.07% 100.00% 100.00% (3)

AUC, area under the concentration/amount curve from the first simulation time 0.1 h to the terminal simulation time that was dependent on the design of the selected

studies (12 h for plasma OTC, 144 h for plasma AuNP, and 768 h for liver AuNP); AuNP, gold nanoparticles; Cmax, maximum concentration/amount during the simulation

time; IV, intravenous; OTC, oxytetracycline; (1) Baggot et al. (1978); (2) Immelman (1977); (3) Fent et al. (2009). Data are normalized as a percentage of the value predicted

using the initial acslX model.
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PBPK model in acslX for risk assessment of the pesticide atra-
zine (Breckenridge et al., 2016; Campbell et al., 2016). However,
due to the many changes in the parameter values, interspecies
extrapolation can also be done by creating a new model for a
specific species. This approach applies to all 4 software pack-
ages discussed in this article.

Population uncertainty and variability analysis
A key aspect that must be considered in using PBPK models for
risk assessment is the uncertainty and variability of pharmaco-
kinetics and pharmacodynamics within species and between
species. Population variability is a result of interindividual var-
iations in physiology, biochemistry, and molecular biology due
to genetic and environmental factors. If the distribution of each
model parameter is known, population variability analysis can
be conducted using Monte Carlo simulation. Monte Carlo simu-
lation can be conveniently implemented in acslX, in which
there is a module specifically for this purpose. PBPK model
users simply need to select input parameters, distribution func-
tion, output parameters, and setting parameters (eg, mean,
standard deviation, lower bound, and/or higher bound), thus
minimal programming is required. In Berkeley Madonna,
MATLAB, and R language, there is no ready-to-use module, but
the model code can be revised to incorporate the distribution of
each parameter, thereby generating population simulation
results. Another tool that is specifically designed to conduct
Monte Carlo stochastic simulations in PBPK models is GNU
MCSim (Bois, 2009). This tool has been extensively used in PBPK
model population variability analysis (Bois et al., 1996; Chiu
et al., 2014; Covington et al., 2007; Lyons et al., 2008; Stamyr et al.,
2015). MCSim is written in C and, like other GNU software, can
be run in a Linux operating system. A recent version of MCSim
(MCSim under R) can be implemented in the R program for use
on a Windows computer as part of the deSolve package
(Soetaert et al., 2010). We used the deSolve package in our mod-
els (Supplementary Data). In addition, Dr Weihsueh A. Chiu
from Texas A&M University has created an alternative (using
minGW) program that allows MCSim to run in a Windows
system.

Although population variability analysis can be conducted
using Monte Carlo simulation by assigning the distributions of
model parameters, in most cases the distributions of many
parameters are unknown or uncertain and assumptions have to
be made in order to generate population simulation results, which
are of relatively high uncertainty. In PBPK models, when new data
become available the prior distributions of model parameters can
be updated to generate posterior distributions that more accu-
rately represent the population characteristics of model parame-
ters using a hierarchical Bayesian population approach with
Markov chain Monte Carlo (MCMC) simulation. This approach
involves the following aspects: (1) specification of the hierarchical
population statistical model, (2) specification of prior distributions
of model parameters; (3) estimation of the posterior distributions
of model parameters using MCMC technique by incorporating
newly available data; and (4) evaluation of convergence, the con-
sistency of estimated parameters, and model fit (Chiu et al., 2014).

In the field of toxicology and risk assessment, the most com-
monly used tool for MCMC analysis in PBPK models is MCSim.
Detailed instructions about the software installation, imple-
mentation, and application in risk assessment are available in
the User’s Manual and in several recent publications (Bois, 2009;
Bois et al., 1996; Chiu et al., 2014; Covington et al., 2007; Lyons
et al., 2008; Stamyr et al., 2015). Previously, MCSim could only be
implemented in a Linux operating system. With the recent

availability of MCSim in a Windows system and in light of the
importance of MCMC analysis in the application of PBPK models
in risk assessment, it is expected that the use of MCSim to con-
duct population variability analysis to support risk assessment
will increase. MATLAB and R language can also be used to con-
duct MCMC analysis in PBPK models (Krauss et al., 2015;
Thompson, 2012). However, these are less commonly used com-
pared with MCSim. In acslX, there are MC Modeler, MCMC
Sampler, and example PBPK models using MCMC analysis that
were specifically designed to help users to conduct MCMC anal-
yses in PBPK models, making it an excellent software package
for risk assessment. On the other hand, to the authors’ knowl-
edge, Berkeley Madonna has not been used or may not be feasi-
ble to conduct MCMC analysis.

User-friendliness and simulation time
Other factors that should be considered in the development and
application of PBPK models in risk assessment are the ease to
learn, the user-friendliness, and the simulation time. AcslX has
multiple user-friendly plugin modules that allow the user to
conduct several common PBPK analyses, including sensitivity
analysis, parameter estimation, and Monte Carlo analysis.
Many additional reference codes are also available in the litera-
ture (Lin et al., 2016b; Yang et al., 2014b; Yoon et al., 2011). It also
has a window in its user interface showing all project files
linked together that allows easy organization, navigation, and
implementation of project files. Therefore, acslX was an easy-
to-learn PBPK modeling tool and suitable for implementation of
PBPK models in risk assessment. However, the price for an aca-
demic version of acslX was much higher than that of Berkeley
Madonna. The latter is also easy-to-use and has similar plugin
analysis modules (ie, curve fitting, parameter estimation, and
sensitivity analysis). Published PBPK model codes based on
Berkeley Madonna are also available in the literature (Liang
et al., 2016; Mumtaz et al., 2012b; Weijs et al., 2014).

When compared with acslX and Berkeley Madonna,
MATLAB is a more powerful high-level programming tool that is
widely used by engineers and scientists across disciplines,
including life science, electronics, automotive, and finance. Its
prices vary depending on the version and the number of tool-
boxes that are included. It can be used to develop PBPK models
and conduct all necessary PBPK analyses, but medium-to-high
level programming is required, so it is relatively difficult to use.
R language is also a powerful high-level programming platform
that is used in a number of areas, especially in statistical analy-
ses. The advantage of R language is that it is freely distributed,
but R language is not commonly used to develop PBPK models
at this stage.

In terms of simulation time, Berkeley Madonna is relatively
faster, ie, with 1 click (“run the model”), the simulation curves
for all parameters are ready to view within 1–2 s depending on
the computer used (the computer used to run these simulations
has an Intel Core i7-6700 Processor [Quad-Core, 8M Cache, up to
4.00 GHz] and 32 GB of RAM). MATLAB is a relatively larger pro-
gram and takes a little longer time to run, but it has many dif-
ferent toolboxes, algorithms or solvers that can be used to
optimize the code to increase the simulation speed. For exam-
ple, the gold nanoparticle PBPK model in MATLAB was opti-
mized using the conventional Euler approximation
discretization method. This technique helps run the program
for a fixed time step defined by dT ¼ 0.0002 (h�1). In this way,
the optimized model ran about several times faster than the
original model (the exact time of each simulation depends on
the computer, MATLAB version, ODE solver, and the time step

30 | TOXICOLOGICAL SCIENCES, 2017, Vol. 158, No. 1

Deleted Text: <sup>TM</sup>
Deleted Text: four 
Deleted Text: u
Deleted Text: v
Deleted Text: a
Deleted Text: <sup>TM</sup>
Deleted Text: .
Deleted Text: .
Deleted Text: <sup>TM</sup>
Deleted Text: &hx00AE;
Deleted Text: ; Chiu <italic>et<?A3B2 show $146#?>al.</italic>, 2014
Deleted Text: Data
Deleted Text: .
Deleted Text: While
Deleted Text: ; <xref ref-type=
Deleted Text: <sup>&hx00AE;</sup>
Deleted Text: ; Krauss <italic>et<?A3B2 show $146#?>al.</italic>, 2015
Deleted Text: t
Deleted Text: o
Deleted Text: <sup>TM</sup>
Deleted Text: <sup>TM</sup>
Deleted Text: f
Deleted Text: s
Deleted Text: t
Deleted Text: <sup>TM</sup>
Deleted Text: ; Yang <italic>et<?A3B2 show $146#?>al.</italic>, 2014b; Lin <italic>et<?A3B2 show $146#?>al.</italic>, 2016b
Deleted Text: <sup>TM</sup>
Deleted Text: <sup>TM</sup>
Deleted Text: <sup>TM</sup>
Deleted Text: .
Deleted Text: .
Deleted Text: <sup>TM</sup>
Deleted Text: ; Liang <italic>et<?A3B2 show $146#?>al.</italic>, 2016
Deleted Text: C
Deleted Text: to
Deleted Text: <sup>TM</sup>
Deleted Text: <sup>TM</sup>
Deleted Text: <sup>&hx00AE;</sup>
Deleted Text: <sup>TM</sup>
Deleted Text: .
Deleted Text: .
Deleted Text: one 
Deleted Text: -
Deleted Text: econds
Deleted Text: <sup>&hx00AE;</sup>
Deleted Text: &hx2122;
Deleted Text: <sup>&hx00AE;</sup>
Deleted Text: <italic>&hx2009;</italic>
Deleted Text: &hx2009;


[dT]). Both the initial and the optimized gold nanoparticle
MATLAB models are provided in the Supplementary Data.

Overall, to the authors’ experience, Berkeley Madonna is rel-
atively easy for beginners to get started and is sufficient to
develop basic PBPK models to conduct regular PBPK analyses
(eg, parameter estimation, route-to-route extrapolation, and
Monte Carlo analysis). Besides the present recoding tutorial,
another article specifically introducing PBPK model develop-
ment using Berkeley Madonna is also available (Yang and Lu,
2007). For experienced PBPK modelers, MATLAB and R language
are more challenging, but more versatile and may be more suit-
able for complex projects, especially for projects involving
MCMC analysis. If population variability analysis is the major
goal, MCSim is recommended to be used as the procedure of
using MCSim to conduct MCMC analysis in PBPK models is well
documented.

Besides acslX, Berkeley Madonna, MATLAB, and R language,
another general-purpose programming language that may be
used to develop PBPK models is Python (Python Software
Foundation, Delaware, USA). Also, while the above-described
model code conversion methods should be of value for PBPK
modelers, they may be less informative for risk assessors or tox-
icologists who only want to use PBPK models and have no or
very limited programming experience. To facilitate model appli-
cation by nonmodelers, one way is to convert a code-based
PBPK model to a graphical user interface (GUI). In this regard,
MATLAB, Shiny (a web application framework for R), and
Python all have GUI development capabilities. A discussion of
the detailed method of GUI development is beyond the scope of
this article, but a general procedure based on MATLAB is pro-
vided in the Supplementary Data. In addition to the general-
purpose programming tools, PBPK models can also be developed
using custom software such as Simcyp Simulator (Certara,
Princeton, New Jersey, USA) and GastroPlus (Simulations Plus,
Inc., Lancaster, California, USA). These commercial proprietary
software systems are commonly used to develop PBPK models
for use in drug discovery and development. They can also be
used to conduct in vitro to in vivo extrapolation and develop
PBPK models for environmental chemicals and drugs to aid tox-
icity assessment (Adeleye et al., 2015; Bois et al., 2010; Wetmore
et al., 2012).

FUTURE PERSPECTIVE

The issues and challenges in the development and application
of PBPK models for risk assessment have been discussed in
another forum article (McLanahan et al., 2012). This article
focuses on the impact of the unavailability of acslX in the
implementation of PBPK models in risk assessment, which obvi-
ously requires learning a new software package to recode pub-
lished models or to develop a new model for future
applications. In this regard, the present tutorial can help mini-
mize this impact. In addition, from a broader view in terms of
future direction in this field, some thoughts to consider include.

Training
Besides this tutorial, another direct approach to address the
impact of unavailability of acslX is to offer hands-on training on
other PBPK modeling software packages to individuals who pre-
viously used acslX and have not yet used other tools. In this
regard, the PBPK workshops offered by Dr Raymond S.H. Yang at
Colorado State University and by a group of PBPK modelers at
ScitoVation offer excellent opportunities to receive relevant
training using Berkeley Madonna. However, these workshops

are typically short-term (ie, approximately 1 week), thus the
participants can learn the concepts and have some basic hands-
on practice, but there is not enough time to complete a whole
project. The long-term goal of training should be to include a
PBPK modeling course in university curricula, similar to what Dr
Jeffrey W. Fisher did at The University of Georgia. In this aspect,
a semester-based PBPK modeling course has been approved and
will be offered through Kansas State University Global Campus.
The objective of this course is to provide longer-term systematic
PBPK modeling training and it is expected that each student
should complete a whole PBPK modeling project by the end of
the semester.

Education
Besides the short-term or longer-term training, the establish-
ment of graduate education programs focusing on PBPK and
other related pharmacokinetic modeling training in academic
institutions is highly encouraged and is in great need. PBPK
modeling and application are specialized techniques and
becoming more and more widely used in various fields that
would require more and more competent PBPK modelers.

Sharing
As pointed out by other PBPK modelers, it is critical and neces-
sary to publish PBPK model codes for subsequent model appli-
cations. More and more PBPK models have published their
codes along with the articles (Liang et al., 2016; Lin et al., 2016c;
Weijs et al., 2014; Yang et al., 2014b; Yoon et al., 2011), but there
are many others that do not. The sharing of model codes, espe-
cially codes in different software packages, is important for
PBPK modelers to learn different programming languages, and
this will definitely advance this field.

Collaboration
With the ever increasingly competitive funding situations,
nowadays there are few academic laboratories that solely focus
on PBPK model development and application because simply
proposing to develop a PBPK model does not justify a grant sup-
port and without grants academic laboratories cannot maintain.
Collaboration between industrial, governmental, and academic
institutions on projects involving PBPK modeling is highly rec-
ommended to maintain support for research, training, and
application of PBPK models in academia.

The essence of systems biology
Despite the fact that PBPK modeling is a relatively mature tech-
nology, new applications and research opportunities continue
to appear on the horizon. If one traces the development of sys-
tems biology back to the teachings of Wiener (1948), one would
perceive that PBPK modeling possesses the essence of systems
biology in the integration of biomedical sciences with mathe-
matics, physics, engineering, and “computing machines.” In
that regard and as a case in point for the application of PBPK
modeling, the recent advances in environmental carcinogenesis
in the “Halifax Project” where a major effort by some 200 cancer
biologists and toxicologists, working on the basis of the 11 hall-
marks of cancer, concluded that low-dose exposures of mix-
tures of environmental pollutants, which work in concert, may
induce environmental carcinogenesis (Goodson et al., 2015).
PBPK, with the incorporation of pharmacodynamic modeling,
would be an ideal platform for conducting these types of com-
plicated experiments on computers. Pushing the envelope fur-
ther, artificial intelligence may very well play an active role in
such endeavors.
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In summary, the present PBPK model recoding methods fill a
gap in the pharmacological and toxicological literature. This
article provides a tutorial for beginners to learn PBPK modeling
techniques, assesses the simulation performance for PBPK
models coded in different software programs, presents a gen-
eral comparison of each software package in the implementa-
tion of PBPK models in risk assessment, offers suggestions for
PBPK modelers to select a suitable alternative modeling tool for
future projects, and may help facilitate the transition from
acslX to alternative modeling tools (eg, Berkeley Madonna,
MATLAB, and R language) in the PBPK modeling community.

SUPPLEMENTARY DATA

Supplementary data are available at Toxicological Sciences online.
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